論文の概要: MIAS-SAM: Medical Image Anomaly Segmentation without thresholding
- arxiv url: http://arxiv.org/abs/2505.22762v1
- Date: Wed, 28 May 2025 18:25:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.475417
- Title: MIAS-SAM: Medical Image Anomaly Segmentation without thresholding
- Title(参考訳): MIAS-SAM: 閾値のない医用画像の異常セグメンテーション
- Authors: Marco Colussi, Dragan Ahmetovic, Sergio Mascetti,
- Abstract要約: MIAS-SAMは、医用画像における異常領域のセグメンテーションのための新しいアプローチである。
パッチベースのメモリバンクを使用して、SAMエンコーダを使用して通常のデータから抽出された、関連する画像特徴を格納する。
最後に、MIAS-SAMは異常マップの重心を計算してSAMデコーダを誘導する。
- 参考スコア(独自算出の注目度): 0.971444782642489
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents MIAS-SAM, a novel approach for the segmentation of anomalous regions in medical images. MIAS-SAM uses a patch-based memory bank to store relevant image features, which are extracted from normal data using the SAM encoder. At inference time, the embedding patches extracted from the SAM encoder are compared with those in the memory bank to obtain the anomaly map. Finally, MIAS-SAM computes the center of gravity of the anomaly map to prompt the SAM decoder, obtaining an accurate segmentation from the previously extracted features. Differently from prior works, MIAS-SAM does not require to define a threshold value to obtain the segmentation from the anomaly map. Experimental results conducted on three publicly available datasets, each with a different imaging modality (Brain MRI, Liver CT, and Retina OCT) show accurate anomaly segmentation capabilities measured using DICE score. The code is available at: https://github.com/warpcut/MIAS-SAM
- Abstract(参考訳): 医用画像における異常領域分割のための新しいアプローチであるMIAS-SAMを提案する。
MIAS-SAMはパッチベースのメモリバンクを使用して、SAMエンコーダを使用して通常のデータから抽出された画像の特徴を格納する。
推論時にSAMエンコーダから抽出した埋め込みパッチをメモリバンクのパッチと比較して異常マップを得る。
最後に、MIAS-SAMは異常マップの重心を計算してSAMデコーダを誘導し、以前に抽出した特徴から正確なセグメンテーションを得る。
以前の作業とは違って、MIAS-SAMは異常マップからセグメンテーションを得るためにしきい値を定義する必要はない。
脳MRI,肝CT,網膜CTの3つの公開データセットで行った実験結果から,DICEスコアを用いた正確な異常セグメンテーション能力が得られた。
コードは、https://github.com/warpcut/MIAS-SAMで入手できる。
関連論文リスト
- Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero shot Medical Image Segmentation [10.444726122035133]
臓器分割のための単純な統合フレームワークSaLIPを提案する。
SAMは画像内の部分ベースのセグメンテーションに使用され、CLIPは関心領域に対応するマスクを検索する。
最後に、SAMは検索されたROIによって特定の臓器を分節するように促される。
論文 参考訳(メタデータ) (2024-04-09T14:56:34Z) - SAMCT: Segment Any CT Allowing Labor-Free Task-Indicator Prompts [28.171383990186904]
我々は、公開データセットから1.1MのCT画像と5Mのマスクからなる大規模なCTデータセットを構築した。
我々は、労働自由なプロンプトを可能にする強力な基盤モデルSAMCTを提案する。
SAMに基づいてSAMCTはさらに、CNNイメージエンコーダ、クロスブランチインタラクションモジュール、タスクインディケータプロンプトエンコーダを備えている。
論文 参考訳(メタデータ) (2024-03-20T02:39:15Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images [15.181219203629643]
Segment Anything (SAM)は、自然画像のゼロショットセグメンテーションにおいて印象的な機能を示す。
しかし、医療画像に適用すると、SAMは顕著なパフォーマンス低下に悩まされる。
本研究では,SAMエンコーダを凍結し,軽量なタスク固有予測ヘッドを微調整することを提案する。
論文 参考訳(メタデータ) (2023-06-23T18:34:30Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
この作業では、Segment Anything Modelを同じ入力イメージで動作するエンコーダに置き換える。
複数の医用画像とビデオのベンチマークで最先端の結果を得る。
内部の知識を検査し、軽量なセグメンテーションソリューションを提供するために、浅いデコンボリューションネットワークによってマスクに復号化することを学ぶ。
論文 参考訳(メタデータ) (2023-06-10T07:27:00Z) - SAMRS: Scaling-up Remote Sensing Segmentation Dataset with Segment
Anything Model [85.85899655118087]
我々はSAMRSと呼ばれる大規模RSセグメンテーションデータセットを生成するための効率的なパイプラインを開発する。
SAMRSは完全に105,090の画像と1,668,241のインスタンスを持ち、既存の高解像度RSセグメンテーションデータセットを数桁上回っている。
論文 参考訳(メタデータ) (2023-05-03T10:58:07Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。