MEDAL: A Framework for Benchmarking LLMs as Multilingual Open-Domain Chatbots and Dialogue Evaluators
- URL: http://arxiv.org/abs/2505.22777v2
- Date: Fri, 06 Jun 2025 17:53:36 GMT
- Title: MEDAL: A Framework for Benchmarking LLMs as Multilingual Open-Domain Chatbots and Dialogue Evaluators
- Authors: John Mendonça, Alon Lavie, Isabel Trancoso,
- Abstract summary: This paper introduces MEDAL, an automated multi-agent framework for generating, evaluating, and curating dialogue evaluation benchmarks.<n>We generate user-chatbot multilingual dialogues conditioned on varied seed contexts.<n>A strong LLM is then used for a multidimensional analysis of the performance of the chatbots, uncovering noticeable cross-lingual performance differences.<n>A benchmark is then used to assess the ability of several reasoning and non-reasoning LLMs to act as evaluators of open-domain dialogues.
- Score: 8.672875654352689
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As the capabilities of chatbots and their underlying LLMs continue to dramatically improve, evaluating their performance has increasingly become a major blocker to their further development. A major challenge is the available benchmarking datasets, which are largely static, outdated, and lacking in multilingual coverage, limiting their ability to capture subtle linguistic and cultural variations. This paper introduces MEDAL, an automated multi-agent framework for generating, evaluating, and curating more representative and diverse open-domain dialogue evaluation benchmarks. Our approach leverages several state-of-the-art LLMs to generate user-chatbot multilingual dialogues, conditioned on varied seed contexts. A strong LLM (GPT-4.1) is then used for a multidimensional analysis of the performance of the chatbots, uncovering noticeable cross-lingual performance differences. Guided by this large-scale evaluation, we curate a new meta-evaluation multilingual benchmark and human-annotate samples with nuanced quality judgments. This benchmark is then used to assess the ability of several reasoning and non-reasoning LLMs to act as evaluators of open-domain dialogues. We find that current LLMs struggle to detect nuanced issues, particularly those involving empathy and reasoning.
Related papers
- Evaluating Large Language Model with Knowledge Oriented Language Specific Simple Question Answering [73.73820209993515]
We introduce KoLasSimpleQA, the first benchmark evaluating the multilingual factual ability of Large Language Models (LLMs)<n>Inspired by existing research, we created the question set with features such as single knowledge point coverage, absolute objectivity, unique answers, and temporal stability.<n>Results show significant performance differences between the two domains.
arXiv Detail & Related papers (2025-05-22T12:27:02Z) - MUG-Eval: A Proxy Evaluation Framework for Multilingual Generation Capabilities in Any Language [16.21019515431378]
We propose MUG-Eval, a novel framework that evaluates large language models' multilingual generation capabilities.<n>We transform existing benchmarks into conversational tasks and measure the LLMs' accuracies on those tasks.<n>We evaluate 8 LLMs across 30 languages spanning high, mid, and low-resource categories, and we find that MUG-Eval correlates strongly with established benchmarks.
arXiv Detail & Related papers (2025-05-20T14:14:00Z) - ProverbEval: Exploring LLM Evaluation Challenges for Low-resource Language Understanding [15.93642619347214]
We introduce proverbeval, LLM evaluation benchmark for low-resource languages.<n>Native language proverb descriptions significantly improve tasks such as proverb generation.<n> monolingual evaluations consistently outperformed their cross-lingual counterparts in generation tasks.
arXiv Detail & Related papers (2024-11-07T06:34:48Z) - On the Benchmarking of LLMs for Open-Domain Dialogue Evaluation [8.672875654352689]
Large Language Models (LLMs) have showcased remarkable capabilities in various Natural Language Processing tasks.
This paper critically examines current evaluation benchmarks, highlighting that the use of older response generators and quality aspects fail to accurately reflect modern chatbots capabilities.
arXiv Detail & Related papers (2024-07-04T11:14:47Z) - Evaluating the Performance of Large Language Models via Debates [43.40134389150456]
Large Language Models (LLMs) are rapidly evolving and impacting various fields.<n>Most current approaches for performance evaluation are either based on fixed, domain-specific questions, or rely on human input.<n>We propose an automated benchmarking framework based on debates between LLMs, judged by another LLM.<n>This method assesses not only domain knowledge, but also skills such as argumentative reasoning and inconsistency recognition.
arXiv Detail & Related papers (2024-06-16T19:02:31Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.<n>The question of how reliable these evaluators are has emerged as a crucial research question.<n>We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
We propose ScaleEval, an agent-debate-assisted meta-evaluation framework.
We release the code for our framework, which is publicly available on GitHub.
arXiv Detail & Related papers (2024-01-30T07:03:32Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHT is a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems.
It features a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level.
Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses.
arXiv Detail & Related papers (2024-01-04T11:27:48Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
This report provides a preliminary evaluation of existing large language models for human-style multi-turn chatting.
We prompt large language models (LLMs) to generate a full multi-turn dialogue based on the ChatSEED, utterance by utterance.
We find GPT-4 can generate human-style multi-turn dialogues with impressive quality, significantly outperforms its counterparts.
arXiv Detail & Related papers (2023-10-20T16:53:51Z) - Simple LLM Prompting is State-of-the-Art for Robust and Multilingual
Dialogue Evaluation [7.767020408405403]
We propose a novel framework that takes advantage of the strengths of current evaluation models with the newly-established paradigm of prompting Large Language Models (LLMs)
Empirical results show our framework achieves state of the art results in terms of mean Spearman correlation scores across several benchmarks.
arXiv Detail & Related papers (2023-08-31T15:19:28Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.