Predicting Human Depression with Hybrid Data Acquisition utilizing Physical Activity Sensing and Social Media Feeds
- URL: http://arxiv.org/abs/2505.22779v1
- Date: Wed, 28 May 2025 18:47:34 GMT
- Title: Predicting Human Depression with Hybrid Data Acquisition utilizing Physical Activity Sensing and Social Media Feeds
- Authors: Mohammad Helal Uddin, Sabur Baidya,
- Abstract summary: Mental disorders including depression, anxiety, and other neurological disorders pose a significant global challenge.<n>This study proposes a hybrid approach by leveraging smartphone sensor data measuring daily physical activities and analyzing their social media (Twitter) interactions.
- Score: 2.526063342028482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mental disorders including depression, anxiety, and other neurological disorders pose a significant global challenge, particularly among individuals exhibiting social avoidance tendencies. This study proposes a hybrid approach by leveraging smartphone sensor data measuring daily physical activities and analyzing their social media (Twitter) interactions for evaluating an individual's depression level. Using CNN-based deep learning models and Naive Bayes classification, we identify human physical activities accurately and also classify the user sentiments. A total of 33 participants were recruited for data acquisition, and nine relevant features were extracted from the physical activities and analyzed with their weekly depression scores, evaluated using the Geriatric Depression Scale (GDS) questionnaire. Of the nine features, six are derived from physical activities, achieving an activity recognition accuracy of 95%, while three features stem from sentiment analysis of Twitter activities, yielding a sentiment analysis accuracy of 95.6%. Notably, several physical activity features exhibited significant correlations with the severity of depression symptoms. For classifying the depression severity, a support vector machine (SVM)-based algorithm is employed that demonstrated a very high accuracy of 94%, outperforming alternative models, e.g., the multilayer perceptron (MLP) and k-nearest neighbor. It is a simple approach yet highly effective in the long run for monitoring depression without breaching personal privacy.
Related papers
- Neural Responses to Affective Sentences Reveal Signatures of Depression [18.304785509577766]
Major Depressive Disorder (MDD) is a highly prevalent mental health condition, and a deeper understanding of its neurocognitive foundations is essential.<n>We investigate how depression alters the temporal dynamics of emotional processing by measuring neural responses to self-referential affective sentences.<n>Our results reveal significant group-level differences in neural activity during sentence viewing, suggesting disrupted integration of emotional and self-referential information in depression.
arXiv Detail & Related papers (2025-06-06T17:09:08Z) - Measuring Anxiety Levels with Head Motion Patterns in Severe Depression Population [4.310167974376404]
This study proposes a new noninvasive method for quantifying anxiety severity by analyzing head movements.<n>We extracted head motion characteristics and applied regression analysis to predict clinically evaluated anxiety levels.<n>Our results demonstrate a high level of precision, achieving a mean absolute error (MAE) of 0.35 in predicting the severity of psychological anxiety.
arXiv Detail & Related papers (2025-02-12T21:55:26Z) - Large-scale digital phenotyping: identifying depression and anxiety indicators in a general UK population with over 10,000 participants [2.2909783327197393]
We conducted a cross-sectional analysis of data from 10,129 participants recruited from a UK-based general population.
Participants shared wearable (Fitbit) data and self-reported questionnaires on depression (PHQ-8), anxiety (GAD-7), and mood via a study app.
We observed significant associations between the severity of depression and anxiety with several factors, including mood, age, gender, BMI, sleep patterns, physical activity, and heart rate.
arXiv Detail & Related papers (2024-09-24T16:05:17Z) - A Hybrid Approach for Depression Classification: Random Forest-ANN
Ensemble on Motor Activity Signals [4.798808180453298]
Wearable sensors provide a potential way to track and comprehend mental health issues.
Recent research has used these sensors in conjunction with machine learning methods to identify patterns relating to different mental health conditions.
We present a novel algorithm called the Hybrid Random forest - Neural network that has been tailored to evaluate sensor data from depressed patients.
arXiv Detail & Related papers (2023-10-13T17:39:35Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - Depression Diagnosis and Forecast based on Mobile Phone Sensor Data [47.93070579578704]
Previous studies have shown the correlation between sensor data collected from mobile phones and human depression states.
In this work, we extract four types of passive features from mobile phone data, including phone call, phone usage, user activity, and GPS features.
We implement a long short-term memory (LSTM) network in a subject-independent 10-fold cross-validation setup to model both a diagnostic and a forecasting tasks.
arXiv Detail & Related papers (2022-05-10T10:05:36Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
Depression is a common mental illness that has to be detected and treated at an early stage to avoid serious consequences.
We developed a gold standard data set that detects the levels of depression as not depressed', moderately depressed' and severely depressed' from the social media postings.
arXiv Detail & Related papers (2022-02-07T10:24:33Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
Anxiety disorders are the most common class of psychiatric problems affecting both children and adults.
Leveraging passive and unobtrusive data collection from smartphones could be a viable alternative to classical methods.
eWellness is an experimental mobile application designed to track a full-suite of sensor and user-log data off an individual's device in a continuous and passive manner.
arXiv Detail & Related papers (2020-08-09T20:22:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.