論文の概要: Distribution free M-estimation
- arxiv url: http://arxiv.org/abs/2505.22807v1
- Date: Wed, 28 May 2025 19:33:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.502623
- Title: Distribution free M-estimation
- Title(参考訳): 分布自由なM推定
- Authors: John C. Duchi,
- Abstract要約: 本稿では,アニメーション統計や最適化問題に対する凸推定が,そのような仮定のない環境で解ける場合に特徴付ける。
我々は、おそらく、最小化される損失のリプシッツ連続性が分布自由化に必要ではないことを示し、機械学習における学習可能性の古典的特徴と異なることも示している。
- 参考スコア(独自算出の注目度): 23.641608784226587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The basic question of delineating those statistical problems that are solvable without making any assumptions on the underlying data distribution has long animated statistics and learning theory. This paper characterizes when a (univariate) convex M-estimation or stochastic optimization problem is solvable in such an assumption-free setting, providing a precise dividing line between solvable and unsolvable problems. The conditions we identify show, perhaps surprisingly, that Lipschitz continuity of the loss being minimized is not necessary for distribution free minimization, and they are also distinct from classical characterizations of learnability in machine learning.
- Abstract(参考訳): 基礎となるデータ分布を仮定することなく解決可能な統計問題を記述するための基本的な問題には、長いアニメーション統計学と学習理論がある。
本稿では,このような仮定のない環境で(一変量)凸M-推定や確率最適化が解ける場合に特徴付け,解けない問題と解けない問題とを正確に分割する。
我々が特定した条件は、おそらく、最小化される損失のリプシッツ連続性は、分布自由化に必要ではなく、機械学習における学習可能性の古典的評価と異なることを示している。
関連論文リスト
- A Stability Principle for Learning under Non-Stationarity [1.1510009152620668]
非定常環境における統計的学習のための多目的フレームワークを開発する。
我々は、人口損失が強く凸している場合やリプシッツのみにおいて、最小限の最小値である後悔境界を対数的要因まで証明する。
本研究は,需要予測と病院看護スタッフの実際のデータ実験を通じて,本手法の実用性を評価する。
論文 参考訳(メタデータ) (2023-10-27T17:53:53Z) - On the Variance, Admissibility, and Stability of Empirical Risk
Minimization [80.26309576810844]
2乗損失を持つ経験的リスク最小化(ERM)は、極小最適誤差率に達する可能性がある。
軽微な仮定では、ERMの準最適性はばらつきよりも大きなバイアスによるものでなければならない。
また、我々の推定は、非ドンスカー類に対するCaponnetto と Rakhlin (2006) の主な結果を補完する ERM の安定性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T15:25:48Z) - A data variation robust learning model based on importance sampling [11.285259001286978]
本稿では,分散逸脱の制約下での損失の最悪のケースを最小限に抑える学習問題に対して,重要サンプリングに基づくデータ変動ロバスト損失(ISloss)を提案する。
提案手法は, 分布変化が大きい場合, 頑健であることを示す。
論文 参考訳(メタデータ) (2023-02-09T04:50:06Z) - Information Theoretical Importance Sampling Clustering [18.248246885248733]
多くのクラスタリング手法の現在の仮定は、トレーニングデータと将来のデータが同じ分布から取られるというものである。
我々は,クラスタリング問題(itisC)に対する情報理論的重要度サンプリングに基づくアプローチを提案する。
合成データセットの実験結果と実世界の負荷予測問題により,提案モデルの有効性が検証された。
論文 参考訳(メタデータ) (2023-02-09T03:18:53Z) - A Local Convergence Theory for the Stochastic Gradient Descent Method in
Non-Convex Optimization With Non-isolated Local Minima [0.0]
非孤立ミニマは、未探索のままのユニークな挑戦を示す。
本稿では, 勾配降下法の非溶解大域ミニマへの局所収束について検討する。
論文 参考訳(メタデータ) (2022-03-21T13:33:37Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
不変リスク最小化(Invariant Risk Minimization)は、データの深い不変性を学ぶという考え方に基づく目標である。
我々は、IRMの目的に基づく分類の最初の分析と、最近提案されたこれらの代替案について、かなり自然で一般的なモデルで分析する。
IRMは、テストデータがトレーニング分布と十分に類似していない限り、破滅的に失敗する可能性がある。
論文 参考訳(メタデータ) (2020-10-12T14:54:32Z) - General stochastic separation theorems with optimal bounds [68.8204255655161]
分離性の現象が明らかになり、機械学習で人工知能(AI)システムのエラーを修正し、AI不安定性を分析するために使用された。
エラーやエラーのクラスタは、残りのデータから分離することができる。
AIシステムを修正する能力は、それに対する攻撃の可能性も開き、高次元性は、同じ分離性によって引き起こされる脆弱性を誘発する。
論文 参考訳(メタデータ) (2020-10-11T13:12:41Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z) - The empirical duality gap of constrained statistical learning [115.23598260228587]
本研究では,制約付き統計学習問題(制約なし版)について,ほぼ全ての現代情報処理のコアとなる研究を行った。
本稿では, 有限次元パラメータ化, サンプル平均, 双対性理論を利用して, 無限次元, 未知分布, 制約を克服する制約付き統計問題に取り組むことを提案する。
フェアラーニングアプリケーションにおいて,この制約付き定式化の有効性と有用性を示す。
論文 参考訳(メタデータ) (2020-02-12T19:12:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。