A Large Language Model-Enabled Control Architecture for Dynamic Resource Capability Exploration in Multi-Agent Manufacturing Systems
- URL: http://arxiv.org/abs/2505.22814v2
- Date: Sat, 28 Jun 2025 20:02:25 GMT
- Title: A Large Language Model-Enabled Control Architecture for Dynamic Resource Capability Exploration in Multi-Agent Manufacturing Systems
- Authors: Jonghan Lim, Ilya Kovalenko,
- Abstract summary: This paper introduces a large language model-enabled control architecture for multi-agent manufacturing systems.<n>A simulation-based case study demonstrates that the proposed architecture improves system resilience and flexibility.
- Score: 0.5755004576310334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Manufacturing environments are becoming more complex and unpredictable due to factors such as demand variations and shorter product lifespans. This complexity requires real-time decision-making and adaptation to disruptions. Traditional control approaches highlight the need for advanced control strategies capable of overcoming unforeseen challenges, as they demonstrate limitations in responsiveness within dynamic industrial settings. Multi-agent systems address these challenges through decentralization of decision-making, enabling systems to respond dynamically to operational changes. However, current multi-agent systems encounter challenges related to real-time adaptation, context-aware decision-making, and the dynamic exploration of resource capabilities. Large language models provide the possibility to overcome these limitations through context-aware decision-making capabilities. This paper introduces a large language model-enabled control architecture for multi-agent manufacturing systems to dynamically explore resource capabilities in response to real-time disruptions. A simulation-based case study demonstrates that the proposed architecture improves system resilience and flexibility. The case study findings show improved throughput and efficient resource utilization compared to existing approaches.
Related papers
- VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning [69.44871115752055]
We propose an advanced multimodal reasoning model trained via a novel Progressive Curriculum Reinforcement Learning (PCuRL) framework.<n>PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts.<n>The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity.
arXiv Detail & Related papers (2025-07-30T12:23:21Z) - Generalizing Large Language Model Usability Across Resource-Constrained [0.43512163406552007]
dissertation presents a systematic study toward generalizing Large Language Models under real-world constraints.<n>First, it introduces a robust text-centric alignment framework that enables LLMs to seamlessly integrate diverse modalities.<n>Beyond multimodal setting, the dissertation investigates inference-time optimization strategies for LLMs.
arXiv Detail & Related papers (2025-05-13T01:00:12Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems.<n>LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations.
arXiv Detail & Related papers (2025-03-20T22:37:15Z) - LLMs Working in Harmony: A Survey on the Technological Aspects of Building Effective LLM-Based Multi Agent Systems [0.0]
This survey investigates foundational technologies essential for developing effective Large Language Model (LLM)-based multi-agent systems.<n>Aiming to answer how best to optimize these systems for collaborative, dynamic environments, we focus on four critical areas: Architecture, Memory, Planning, and Technologies/ Frameworks.
arXiv Detail & Related papers (2025-03-13T06:17:50Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.<n>We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.<n> Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Preparing for Super-Reactivity: Early Fault-Detection in the Development of Exceedingly Complex Reactive Systems [1.6298172960110866]
We introduce the term Super-Reactive Systems to refer to reactive systems whose construction and behavior are complex, constantly changing and evolving.
Finding hidden faults in such systems early in planning and development is critical for human safety, the environment, society and the economy.
We propose an architecture for models and tools to overcome barriers and enable simulation, systematic analysis, and fault detection and handling.
arXiv Detail & Related papers (2024-10-03T16:08:30Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Reasoning Capacity in Multi-Agent Systems: Limitations, Challenges and
Human-Centered Solutions [14.398238217358116]
We present a formal definition of reasoning capacity and illustrate its utility in identifying limitations within each component of the system.
We then argue how these limitations can be addressed with a self-reflective process wherein human-feedback is used to alleviate shortcomings in reasoning.
arXiv Detail & Related papers (2024-02-02T02:53:11Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.