LLMs Working in Harmony: A Survey on the Technological Aspects of Building Effective LLM-Based Multi Agent Systems
- URL: http://arxiv.org/abs/2504.01963v1
- Date: Thu, 13 Mar 2025 06:17:50 GMT
- Title: LLMs Working in Harmony: A Survey on the Technological Aspects of Building Effective LLM-Based Multi Agent Systems
- Authors: R. M. Aratchige, W. M. K. S. Ilmini,
- Abstract summary: This survey investigates foundational technologies essential for developing effective Large Language Model (LLM)-based multi-agent systems.<n>Aiming to answer how best to optimize these systems for collaborative, dynamic environments, we focus on four critical areas: Architecture, Memory, Planning, and Technologies/ Frameworks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This survey investigates foundational technologies essential for developing effective Large Language Model (LLM)-based multi-agent systems. Aiming to answer how best to optimize these systems for collaborative, dynamic environments, we focus on four critical areas: Architecture, Memory, Planning, and Technologies/Frameworks. By analyzing recent advancements and their limitations - such as scalability, real-time response challenges, and agent coordination constraints, we provide a detailed view of the technological landscape. Frameworks like the Mixture of Agents architecture and the ReAct planning model exemplify current innovations, showcasing improvements in role assignment and decision-making. This review synthesizes key strengths and persistent challenges, offering practical recommendations to enhance system scalability, agent collaboration, and adaptability. Our findings provide a roadmap for future research, supporting the creation of robust, efficient multi-agent systems that advance both individual agent performance and collective system resilience.
Related papers
- Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications [0.0]
This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP)
We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns.
We identify current limitations, emerging research opportunities, and potential transformative applications across industries.
arXiv Detail & Related papers (2025-04-26T03:43:03Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.
As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.
This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems.<n>LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations.
arXiv Detail & Related papers (2025-03-20T22:37:15Z) - Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review [32.73711802351707]
Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address real-world challenges.<n>Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving.<n>This survey provides a systematic examination of how EMAS can benefit from these generative capabilities.
arXiv Detail & Related papers (2025-02-17T07:39:34Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks.
We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup.
arXiv Detail & Related papers (2024-08-23T23:11:08Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
This paper develops generative artificial intelligence (AI) agents for model formulation and then applies a mixture of experts (MoE) to design transmission strategies.
Specifically, we leverage large language models (LLMs) to build an interactive modeling paradigm.
We propose an MoE-proximal policy optimization (PPO) approach to solve the formulated problem.
arXiv Detail & Related papers (2024-04-14T03:44:54Z) - LLM-Based Multi-Agent Systems for Software Engineering: Literature Review, Vision and the Road Ahead [14.834072370183106]
This paper explores the transformative potential of integrating Large Language Models into Multi-Agent (LMA) systems.<n>By leveraging the collaborative and specialized abilities of multiple agents, LMA systems enable autonomous problem-solving, improve robustness, and provide scalable solutions for managing the complexity of real-world software projects.
arXiv Detail & Related papers (2024-04-07T07:05:40Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
Large language models (LLMs) have revolutionized the field of artificial intelligence, endowing it with sophisticated language understanding and generation capabilities.
This paper proposes a comprehensive multi-dimensional taxonomy to analyze how autonomous LLM-powered multi-agent systems balance the dynamic interplay between autonomy and alignment.
arXiv Detail & Related papers (2023-10-05T16:37:29Z) - Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents [0.0]
We present a novel framework for enhancing the capabilities of large language models (LLMs) by leveraging the power of multi-agent systems.
Our framework introduces a collaborative environment where multiple intelligent agent components, each with distinctive attributes and roles, work together to handle complex tasks more efficiently and effectively.
arXiv Detail & Related papers (2023-06-05T23:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.