論文の概要: What Has Been Lost with Synthetic Evaluation?
- arxiv url: http://arxiv.org/abs/2505.22830v2
- Date: Mon, 02 Jun 2025 19:12:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 16:31:03.661442
- Title: What Has Been Lost with Synthetic Evaluation?
- Title(参考訳): 合成評価で失ったものは何か?
- Authors: Alexander Gill, Abhilasha Ravichander, Ana Marasović,
- Abstract要約: 大規模言語モデル(LLM)は、データ生成にますます使われている。
オーバーテキストベンチマークを生成することにより, LLM が要求を満たすことができるかどうかを検討する。
我々は、LLMが人間によって認可されたものよりも難易度が低いことを示す。
- 参考スコア(独自算出の注目度): 43.773053236733425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly used for data generation. However, creating evaluation benchmarks raises the bar for this emerging paradigm. Benchmarks must target specific phenomena, penalize exploiting shortcuts, and be challenging. Through two case studies, we investigate whether LLMs can meet these demands by generating reasoning over-text benchmarks and comparing them to those created through careful crowdsourcing. Specifically, we evaluate both the validity and difficulty of LLM-generated versions of two high-quality reading comprehension datasets: CondaQA, which evaluates reasoning about negation, and DROP, which targets reasoning about quantities. We find that prompting LLMs can produce variants of these datasets that are often valid according to the annotation guidelines, at a fraction of the cost of the original crowdsourcing effort. However, we show that they are less challenging for LLMs than their human-authored counterparts. This finding sheds light on what may have been lost by generating evaluation data with LLMs, and calls for critically reassessing the immediate use of this increasingly prevalent approach to benchmark creation.
- Abstract(参考訳): 大規模言語モデル(LLM)は、データ生成にますます使われている。
しかし、評価ベンチマークを作成することで、この新興パラダイムの限界が高まる。
ベンチマークは特定の現象をターゲットにし、ショートカットを悪用し、挑戦しなければなりません。
2つのケーススタディを通じて、LLMは、オーバーテキストベンチマークを推論し、慎重なクラウドソーシングによって作成されたものと比較することにより、これらの要求を満たすことができるかどうかを検討する。
具体的には,2つの高品質読解データセットである CondaQA と DROP の LLM 生成版の有効性と難易度を評価した。
LLMのプロンプトによってこれらのデータセットの変種が生成され、このガイドラインに従って、オリジナルのクラウドソーシングのコストのごく一部で、しばしば有効であることが判明した。
しかし, LLM では, 人手による LLM よりも難易度が低いことを示す。
この発見は、LCMで評価データを生成することによって失われた可能性があることに光を当て、この急速に普及するこのベンチマーク作成アプローチの即時的使用を批判的に再評価するよう求めている。
関連論文リスト
- GAOKAO-Eval: Does high scores truly reflect strong capabilities in LLMs? [32.972545797220924]
大規模言語モデル(LLM)は人為的なベンチマークを用いて一般的に評価される。
GAokaO-Evalは、ハイスコアが人間の手動能力を本当に反映していないことを明らかにした。
論文 参考訳(メタデータ) (2024-12-13T11:38:10Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
大言語モデル(LLM)は、要約やダイアログベースのタスクにおいて、非標準化メトリクスの自動評価器として機能する。
人間の判断に比較して,LLMが品質評価指標としていかに優れているかを検討するために,複数のプロンプト戦略にまたがる実験を行った。
論文 参考訳(メタデータ) (2024-12-12T13:31:58Z) - Order Matters in Hallucination: Reasoning Order as Benchmark and Reflexive Prompting for Large-Language-Models [0.0]
大規模言語モデル(LLM)は、その誕生以来、様々な学術分野や産業分野にまたがって大きな注目を集めてきた。
LLMはしばしば「ハロシン化問題」に悩まされるが、出力は文法的にも論理的にも一貫性があり、事実の正確性に欠ける。
論文 参考訳(メタデータ) (2024-08-09T14:34:32Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。