Revisiting Multi-Agent Debate as Test-Time Scaling: A Systematic Study of Conditional Effectiveness
- URL: http://arxiv.org/abs/2505.22960v2
- Date: Fri, 20 Jun 2025 03:07:38 GMT
- Title: Revisiting Multi-Agent Debate as Test-Time Scaling: A Systematic Study of Conditional Effectiveness
- Authors: Yongjin Yang, Euiin Yi, Jongwoo Ko, Kimin Lee, Zhijing Jin, Se-Young Yun,
- Abstract summary: Multi-agent debate (MAD) approaches offer improved reasoning, robustness, and diverse perspectives over monolithic models.<n>This paper conceptualizes MAD as a test-time computational scaling technique, distinguished by collaborative refinement and diverse exploration capabilities.<n>We conduct a comprehensive empirical investigation comparing MAD with strong self-agent test-time scaling baselines on mathematical reasoning and safety-related tasks.
- Score: 50.29739337771454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The remarkable growth in large language model (LLM) capabilities has spurred exploration into multi-agent systems, with debate frameworks emerging as a promising avenue for enhanced problem-solving. These multi-agent debate (MAD) approaches, where agents collaboratively present, critique, and refine arguments, potentially offer improved reasoning, robustness, and diverse perspectives over monolithic models. Despite prior studies leveraging MAD, a systematic understanding of its effectiveness compared to self-agent methods, particularly under varying conditions, remains elusive. This paper seeks to fill this gap by conceptualizing MAD as a test-time computational scaling technique, distinguished by collaborative refinement and diverse exploration capabilities. We conduct a comprehensive empirical investigation comparing MAD with strong self-agent test-time scaling baselines on mathematical reasoning and safety-related tasks. Our study systematically examines the influence of task difficulty, model scale, and agent diversity on MAD's performance. Key findings reveal that, for mathematical reasoning, MAD offers limited advantages over self-agent scaling but becomes more effective with increased problem difficulty and decreased model capability, while agent diversity shows little benefit. Conversely, for safety tasks, MAD's collaborative refinement can increase vulnerability, but incorporating diverse agent configurations facilitates a gradual reduction in attack success through the collaborative refinement process. We believe our findings provide critical guidance for the future development of more effective and strategically deployed MAD systems.
Related papers
- MAD-Spear: A Conformity-Driven Prompt Injection Attack on Multi-Agent Debate Systems [4.931691794637798]
Multi-agent debate (MAD) systems leverage collaborative interactions among large language models (LLMs) to improve reasoning capabilities.<n>We introduce MAD-Spear, a targeted prompt injection attack that compromises a small subset of agents but significantly disrupts the overall MAD process.
arXiv Detail & Related papers (2025-07-17T12:09:39Z) - Literature Review Of Multi-Agent Debate For Problem-Solving [0.0]
Multi-agent large language models (MA-LLMs) are a rapidly growing research area that leverages multiple interacting language agents to tackle complex tasks.<n>This literature review synthesizes the latest research on agent profiles, communication structures, and decision-making processes.
arXiv Detail & Related papers (2025-05-29T13:57:00Z) - Is Multi-Agent Debate (MAD) the Silver Bullet? An Empirical Analysis of MAD in Code Summarization and Translation [10.038721196640864]
Multi-Agent Debate (MAD) systems enable structured debates among Large Language Models (LLMs)<n> MAD promotes divergent thinking through role-specific agents, dynamic interactions, and structured decision-making.<n>This study investigates MAD's effectiveness on two Software Engineering (SE) tasks.
arXiv Detail & Related papers (2025-03-15T07:30:37Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - If Multi-Agent Debate is the Answer, What is the Question? [19.246022410492692]
Multi-agent debate (MAD) has emerged as a promising approach to enhance the factual accuracy and reasoning quality of large language models.<n>Despite its potential, MAD research suffers from critical shortcomings in evaluation practices.<n>This paper presents a systematic evaluation of five representative MAD methods across nine benchmarks.
arXiv Detail & Related papers (2025-02-12T21:01:10Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)<n>We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.<n>We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - MultiAgent Collaboration Attack: Investigating Adversarial Attacks in Large Language Model Collaborations via Debate [24.92465108034783]
Large Language Models (LLMs) have shown exceptional results on current benchmarks when working individually.
The advancement in their capabilities, along with a reduction in parameter size and inference times, has facilitated the use of these models as agents.
We evaluate the behavior of a network of models collaborating through debate under the influence of an adversary.
arXiv Detail & Related papers (2024-06-20T20:09:37Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Learning to Break: Knowledge-Enhanced Reasoning in Multi-Agent Debate System [16.830182915504555]
Multi-agent debate system (MAD) imitates the process of human discussion in pursuit of truth.
It is challenging to make various agents perform right and highly consistent cognition due to their limited and different knowledge backgrounds.
We propose a novel underlineMulti-underlineAgent underlineDebate with underlineKnowledge-underlineEnhanced framework to promote the system to find the solution.
arXiv Detail & Related papers (2023-12-08T06:22:12Z) - On the Robustness of Large Multimodal Models Against Image Adversarial
Attacks [81.2935966933355]
We study the impact of visual adversarial attacks on Large Multimodal Models (LMMs)
We find that in general LMMs are not robust to visual adversarial inputs.
We propose a new approach to real-world image classification which we term query decomposition.
arXiv Detail & Related papers (2023-12-06T04:59:56Z) - Should we be going MAD? A Look at Multi-Agent Debate Strategies for LLMs [7.7433783185451075]
We benchmark a range of debating and prompting strategies to explore the trade-offs between cost, time, and accuracy.
We find that multi-agent debating systems, in their current form, do not reliably outperform other proposed prompting strategies.
We build on these results to offer insights into improving debating strategies, such as adjusting agent agreement levels.
arXiv Detail & Related papers (2023-11-29T05:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.