論文の概要: EquiReg: Equivariance Regularized Diffusion for Inverse Problems
- arxiv url: http://arxiv.org/abs/2505.22973v1
- Date: Thu, 29 May 2025 01:25:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.604591
- Title: EquiReg: Equivariance Regularized Diffusion for Inverse Problems
- Title(参考訳): EquiReg: 逆問題に対する等分散正規化拡散
- Authors: Bahareh Tolooshams, Aditi Chandrashekar, Rayhan Zirvi, Abbas Mammadov, Jiachen Yao, Chuwei Wang, Anima Anandkumar,
- Abstract要約: 拡散に基づく逆問題解法における後方サンプリングを正規化するためのフレームワークであるEquiReg拡散法を提案する。
様々な解法に適用すると、EquiRegは線形および非線形画像復元タスクにおいて最先端の拡散モデルより優れる。
- 参考スコア(独自算出の注目度): 67.01847869495558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models represent the state-of-the-art for solving inverse problems such as image restoration tasks. In the Bayesian framework, diffusion-based inverse solvers incorporate a likelihood term to guide the prior sampling process, generating data consistent with the posterior distribution. However, due to the intractability of the likelihood term, many current methods rely on isotropic Gaussian approximations, which lead to deviations from the data manifold and result in inconsistent, unstable reconstructions. We propose Equivariance Regularized (EquiReg) diffusion, a general framework for regularizing posterior sampling in diffusion-based inverse problem solvers. EquiReg enhances reconstructions by reweighting diffusion trajectories and penalizing those that deviate from the data manifold. We define a new distribution-dependent equivariance error, empirically identify functions that exhibit low error for on-manifold samples and higher error for off-manifold samples, and leverage these functions to regularize the diffusion sampling process. When applied to a variety of solvers, EquiReg outperforms state-of-the-art diffusion models in both linear and nonlinear image restoration tasks, as well as in reconstructing partial differential equations.
- Abstract(参考訳): 拡散モデルは、画像復元タスクのような逆問題を解決するための最先端技術である。
ベイズフレームワークでは、拡散に基づく逆解法は、事前サンプリングプロセスの導出のための可能性項を取り入れ、後部分布と整合したデータを生成する。
しかし、確率項の難易度のため、現在の多くの手法は等方的ガウス近似に依存しており、これはデータ多様体から逸脱し、一貫性のない不安定な再構成をもたらす。
拡散に基づく逆問題解法における後方サンプリングを正規化するための一般的なフレームワークである等分散正規化拡散(EquiReg)を提案する。
EquiRegは拡散軌跡を再重み付けし、データ多様体から逸脱するものを罰することによって再構成を強化する。
そこで我々は,新しい分布依存等分散誤差を定義し,オンマンフォールドサンプルの低誤差およびオフマンフォールドサンプルの高誤差を示す関数を実験的に同定し,これらの関数を利用して拡散サンプリングプロセスの正則化を行う。
様々な解法に適用すると、EquiRegは線形および非線形画像復元タスクおよび偏微分方程式の再構成において最先端の拡散モデルより優れる。
関連論文リスト
- A Mixture-Based Framework for Guiding Diffusion Models [19.83064246586143]
デノナイジング拡散モデルはベイズ逆問題(英語版)の分野において大きな進歩をもたらした。
近年のアプローチでは、事前学習した拡散モデルを用いて、そのような問題を広範囲に解決している。
本研究はこれらの中間分布の新たな混合近似を提案する。
論文 参考訳(メタデータ) (2025-02-05T16:26:06Z) - Geophysical inverse problems with measurement-guided diffusion models [0.4532517021515834]
DPS(Diffusion Posterior Sampling)とPGDM(Pseudo-inverse Guided Diffusion Model)という2つのサンプリングアルゴリズムを提案する。
DPSでは、解の1ステップの denoising 推定から得られた残差に対して、モデリング演算子の随伴を応用して誘導項を得る。
一方、PGDMは擬逆演算子を用いており、これは一段階の分極解が決定論的でないことを起源としている。
論文 参考訳(メタデータ) (2025-01-08T23:33:50Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
本稿では,従来の離散拡散に基づく画像生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々の知る限りでは、これは画像逆問題を解決するために離散拡散モデルに基づく先行手法を使う最初のアプローチである。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - On Error Propagation of Diffusion Models [77.91480554418048]
DMのアーキテクチャにおける誤り伝播を数学的に定式化するための理論的枠組みを開発する。
累積誤差を正規化項として適用して誤差伝搬を低減する。
提案した正規化はエラーの伝播を低減し,バニラDMを大幅に改善し,以前のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-08-09T15:31:17Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。