論文の概要: Geophysical inverse problems with measurement-guided diffusion models
- arxiv url: http://arxiv.org/abs/2501.04881v1
- Date: Wed, 08 Jan 2025 23:33:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:58:15.205622
- Title: Geophysical inverse problems with measurement-guided diffusion models
- Title(参考訳): 測度誘導拡散モデルによる地球物理学的逆問題
- Authors: Matteo Ravasi,
- Abstract要約: DPS(Diffusion Posterior Sampling)とPGDM(Pseudo-inverse Guided Diffusion Model)という2つのサンプリングアルゴリズムを提案する。
DPSでは、解の1ステップの denoising 推定から得られた残差に対して、モデリング演算子の随伴を応用して誘導項を得る。
一方、PGDMは擬逆演算子を用いており、これは一段階の分極解が決定論的でないことを起源としている。
- 参考スコア(独自算出の注目度): 0.4532517021515834
- License:
- Abstract: Solving inverse problems with the reverse process of a diffusion model represents an appealing avenue to produce highly realistic, yet diverse solutions from incomplete and possibly noisy measurements, ultimately enabling uncertainty quantification at scale. However, because of the intractable nature of the score function of the likelihood term (i.e., $\nabla_{\mathbf{x}_t} p(\mathbf{y} | \mathbf{x}_t)$), various samplers have been proposed in the literature that use different (more or less accurate) approximations of such a gradient to guide the diffusion process towards solutions that match the observations. In this work, I consider two sampling algorithms recently proposed under the name of Diffusion Posterior Sampling (DPS) and Pseudo-inverse Guided Diffusion Model (PGDM), respectively. In DSP, the guidance term used at each step of the reverse diffusion process is obtained by applying the adjoint of the modeling operator to the residual obtained from a one-step denoising estimate of the solution. On the other hand, PGDM utilizes a pseudo-inverse operator that originates from the fact that the one-step denoised solution is not assumed to be deterministic, rather modeled as a Gaussian distribution. Through an extensive set of numerical examples on two geophysical inverse problems (namely, seismic interpolation and seismic inversion), I show that two key aspects for the success of any measurement-guided diffusion process are: i) our ability to re-parametrize the inverse problem such that the sought after model is bounded between -1 and 1 (a pre-requisite for any diffusion model); ii) the choice of the training dataset used to learn the implicit prior that guides the reverse diffusion process. Numerical examples on synthetic and field datasets reveal that PGDM outperforms DPS in both scenarios at limited additional cost.
- Abstract(参考訳): 拡散モデルの逆過程による逆問題の解法は、非完全でノイズの多い測定から非常に現実的で多様な解を導き、最終的にスケールにおける不確実な定量化を可能にするための魅力的な方法である。
しかしながら、確率項のスコア関数の難易度の性質(例えば、$\nabla_{\mathbf{x}_t} p(\mathbf{y} | \mathbf{x}_t)$)により、観測に一致する解へ拡散過程を導くために、そのような勾配の異なる(より正確には)近似を用いる様々なサンプルが文献で提案されている。
本稿では,DPS(Diffusion Posterior Sampling)とPGDM(Pseudo-inverse Guided Diffusion Model)という2つのサンプリングアルゴリズムを提案する。
DSPにおいて、逆拡散過程の各ステップで使用される誘導項は、解の1ステップの分極推定から得られた残基にモデリング演算子の随伴を適用することにより得られる。
一方、PGDMは擬逆作用素を用いており、これは一段階の分極解が決定論的ではなくガウス分布としてモデル化されるという事実に由来する。
2つの物理逆問題(地震波補間と地震波逆転)の広範な数値的な例を通して、測定誘導拡散プロセスの成功の2つの重要な側面が示される。
一 探索後のモデルが−1から1(拡散モデルの前提条件)に拘束されるような逆問題を再パラメータ化することができること。
二 逆拡散過程を導く暗黙の事前学習に使用する訓練データセットの選択
合成データセットとフィールドデータセットの数値的な例は、PGDMが追加コストの制限により両方のシナリオでDPSより優れていることを示している。
関連論文リスト
- Think Twice Before You Act: Improving Inverse Problem Solving With MCMC [40.5682961122897]
事前学習した拡散モデルを用いて逆問題を解決するためにtextbfDiffusion textbfPosterior textbfDPMC(textbfDPMC)を提案する。
提案アルゴリズムは,ほぼすべてのタスクにおいてDPSよりも性能が優れており,既存手法と競合する。
論文 参考訳(メタデータ) (2024-09-13T06:10:54Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
本研究では拡散生成モデルに用いる決定論的サンプリング器の非漸近解析のためのフレームワークを開発する。
確率フローODEに沿った1ステップは,1) 条件付き対数線上を無限に先行して上昇する回復ステップ,2) 雑音を現在の勾配に向けて前向きに進行する劣化ステップの2段階で表すことができる。
論文 参考訳(メタデータ) (2023-03-06T18:59:19Z) - VI-DGP: A variational inference method with deep generative prior for
solving high-dimensional inverse problems [0.7734726150561089]
本研究では,高次元後方分布を推定するための新しい近似法を提案する。
このアプローチは、深層生成モデルを利用して、空間的に変化するパラメータを生成することができる事前モデルを学ぶ。
提案手法は自動微分方式で完全に実装できる。
論文 参考訳(メタデータ) (2023-02-22T06:48:10Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。