論文の概要: Learning coordinated badminton skills for legged manipulators
- arxiv url: http://arxiv.org/abs/2505.22974v1
- Date: Thu, 29 May 2025 01:26:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.605505
- Title: Learning coordinated badminton skills for legged manipulators
- Title(参考訳): 足のマニピュレータのための協調バドミントンスキルの学習
- Authors: Yuntao Ma, Andrei Cramariuc, Farbod Farshidian, Marco Hutter,
- Abstract要約: 我々は,手足の移動マニピュレータがバドミントンを奏でるようにするためのアプローチを提案する。
本研究は,全身運動能力のための強化学習に基づく統一的制御政策を提案する。
本手法は,シャトルコック予測モデル,ロバスト動作制御のための制約付き強化学習,システム同定技術を含む。
- 参考スコア(独自算出の注目度): 17.63519515098226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coordinating the motion between lower and upper limbs and aligning limb control with perception are substantial challenges in robotics, particularly in dynamic environments. To this end, we introduce an approach for enabling legged mobile manipulators to play badminton, a task that requires precise coordination of perception, locomotion, and arm swinging. We propose a unified reinforcement learning-based control policy for whole-body visuomotor skills involving all degrees of freedom to achieve effective shuttlecock tracking and striking. This policy is informed by a perception noise model that utilizes real-world camera data, allowing for consistent perception error levels between simulation and deployment and encouraging learned active perception behaviors. Our method includes a shuttlecock prediction model, constrained reinforcement learning for robust motion control, and integrated system identification techniques to enhance deployment readiness. Extensive experimental results in a variety of environments validate the robot's capability to predict shuttlecock trajectories, navigate the service area effectively, and execute precise strikes against human players, demonstrating the feasibility of using legged mobile manipulators in complex and dynamic sports scenarios.
- Abstract(参考訳): 下肢と上肢の運動を調整し、四肢制御を知覚と整合させることは、ロボット工学、特に動的環境において重要な課題である。
そこで本研究では,手足の移動マニピュレータがバドミントンを奏でるようにするためのアプローチを提案する。
そこで本研究では,すべての自由度を包含し,効果的なシャトルコック追跡と打撃を行う全体バイスモータスキルのための強化学習に基づく統一的制御ポリシーを提案する。
このポリシーは、現実世界のカメラデータを利用して、シミュレーションとデプロイメントの間の一貫した認識エラーレベルを可能にし、学習されたアクティブな知覚行動を奨励する知覚ノイズモデルによって通知される。
本手法は, シャトルコック予測モデル, 頑健な動作制御のための拘束強化学習, 展開準備性を高める統合システム識別技術を含む。
様々な環境における大規模な実験結果から、ロボットがシャトルコック軌道を予測し、サービスエリアを効果的にナビゲートし、人間のプレイヤーに対して正確なストライキを実行し、複雑でダイナミックなスポーツシナリオで足の移動マニピュレータを使用することの可能性を示す。
関連論文リスト
- Learning Humanoid Standing-up Control across Diverse Postures [27.79222176982376]
立ち上がり制御はヒューマノイドロボットにとって不可欠であり、現在の移動と移動操作システムに統合される可能性がある。
本稿では,立ち上がり制御をゼロから学習する強化学習フレームワークであるHoST(Humanoid Standing-up Control)を提案する。
実験結果から, 各種実験室および屋外環境におけるスムーズ, 安定, 頑健な立位運動が得られた。
論文 参考訳(メタデータ) (2025-02-12T13:10:09Z) - Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos [64.48857272250446]
我々はMotoを紹介する。Motoは、映像コンテンツをラテントモーションTokenizerでラテントモーションTokenシーケンスに変換する。
我々は、モーショントークンによるMoto-GPTの事前学習を行い、多様な視覚的動きの知識を捉えることができる。
実際のロボット動作に先立って学習した動きを転送するために、潜伏した動きのトークン予測と実際のロボット制御をシームレスにブリッジするコファインチューニング戦略を実装した。
論文 参考訳(メタデータ) (2024-12-05T18:57:04Z) - Agile and versatile bipedal robot tracking control through reinforcement learning [12.831810518025309]
本稿では,二足歩行ロボットのための多目的コントローラを提案する。
足首と身体の軌跡を、単一の小さなニューラルネットワークを用いて広範囲の歩行で追跡する。
最小限の制御ユニットと高レベルなポリシーを組み合わせることで、高いフレキシブルな歩行制御を実現することができる。
論文 参考訳(メタデータ) (2024-04-12T05:25:03Z) - Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
本稿では,ロボットハンドアームシステムによる飛行物体の捕獲方法の学習を可能にするモジュラーフレームワークを提案する。
本フレームワークは,物体の軌跡予測を学習するオブジェクト状態推定器,(ii)捕捉対象のポーズのスコアとランク付けを学ぶキャッチポーズ品質ネットワーク,(iii)ロボットハンドをキャッチ前ポーズに移動させるように訓練されたリーチ制御ポリシ,(iv)ソフトキャッチ動作を行うように訓練された把握制御ポリシの5つのコアモジュールから構成される。
各モジュールと統合システムのシミュレーションにおいて、我々のフレームワークを広範囲に評価し、飛行における高い成功率を示す。
論文 参考訳(メタデータ) (2023-12-21T16:20:12Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
本研究は,バネ装荷逆振り子モデルを用いて学習プロセスを導くことで,移動における現実性を保証するための汎用的アプローチを提案する。
モデルのない設定であっても、2足歩行ロボットと4足歩行ロボットに対して、学習したポリシーが現実的でエネルギー効率のよい移動歩行を生成できることを示す実験結果を示す。
論文 参考訳(メタデータ) (2021-10-28T10:14:47Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。