Knowledge Distillation for Reservoir-based Classifier: Human Activity Recognition
- URL: http://arxiv.org/abs/2505.22985v1
- Date: Thu, 29 May 2025 01:48:36 GMT
- Title: Knowledge Distillation for Reservoir-based Classifier: Human Activity Recognition
- Authors: Masaharu Kagiyama, Tsuyoshi Okita,
- Abstract summary: PatchEchoClassifier is a novel model that leverages a reservoir-based mechanism known as the Echo State Network (ESN)<n>The model is designed for human activity recognition (HAR) using one-dimensional sensor signals and incorporates a tokenizer to extract patch-level representations.<n> Experimental evaluations on multiple HAR datasets demonstrate that our model achieves over 80 percent accuracy while significantly reducing computational cost.
- Score: 3.5938832647391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to develop an energy-efficient classifier for time-series data by introducing PatchEchoClassifier, a novel model that leverages a reservoir-based mechanism known as the Echo State Network (ESN). The model is designed for human activity recognition (HAR) using one-dimensional sensor signals and incorporates a tokenizer to extract patch-level representations. To train the model efficiently, we propose a knowledge distillation framework that transfers knowledge from a high-capacity MLP-Mixer teacher to the lightweight reservoir-based student model. Experimental evaluations on multiple HAR datasets demonstrate that our model achieves over 80 percent accuracy while significantly reducing computational cost. Notably, PatchEchoClassifier requires only about one-sixth of the floating point operations (FLOPS) compared to DeepConvLSTM, a widely used convolutional baseline. These results suggest that PatchEchoClassifier is a promising solution for real-time and energy-efficient human activity recognition in edge computing environments.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - Smooth-Distill: A Self-distillation Framework for Multitask Learning with Wearable Sensor Data [0.0]
This paper introduces Smooth-Distill, a novel self-distillation framework designed to simultaneously perform human activity recognition (HAR) and sensor placement detection.<n>Unlike conventional distillation methods that require separate teacher and student models, the proposed framework utilizes a smoothed, historical version of the model itself as the teacher.<n> Experimental results show that Smooth-Distill consistently outperforms alternative approaches across different evaluation scenarios.
arXiv Detail & Related papers (2025-06-27T06:51:51Z) - Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
Self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only.<n> Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods.
arXiv Detail & Related papers (2025-04-19T14:08:56Z) - Neural Edge Histogram Descriptors for Underwater Acoustic Target Recognition [42.23422932643755]
This work adapts the neural edge histogram descriptors (NEHD) method originally developed for image classification, to classify passive sonar signals.<n>We conduct a comprehensive evaluation of statistical and structural texture features, demonstrating that their combination achieves competitive performance with large pre-trained models.<n>The proposed NEHD-based approach offers a lightweight and efficient solution for underwater target recognition, significantly reducing computational costs while maintaining accuracy.
arXiv Detail & Related papers (2025-03-17T22:57:05Z) - CLIP-CID: Efficient CLIP Distillation via Cluster-Instance Discrimination [28.061239778773423]
Contrastive Language-Image Pre-training (CLIP) has achieved excellent performance over a wide range of tasks.<n>CLIP heavily relies on a substantial corpus of pre-training data, resulting in notable consumption of computational resources.<n>We introduce CLIP-CID, a novel distillation mechanism that effectively transfers knowledge from a large vision-language foundation model to a smaller model.
arXiv Detail & Related papers (2024-08-18T11:23:21Z) - Learning Lightweight Object Detectors via Multi-Teacher Progressive
Distillation [56.053397775016755]
We propose a sequential approach to knowledge distillation that progressively transfers the knowledge of a set of teacher detectors to a given lightweight student.
To the best of our knowledge, we are the first to successfully distill knowledge from Transformer-based teacher detectors to convolution-based students.
arXiv Detail & Related papers (2023-08-17T17:17:08Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model.
We propose inconsistent knowledge distillation (IKD) which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions.
Our method outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors.
arXiv Detail & Related papers (2022-09-20T16:36:28Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - A Light-weight Deep Human Activity Recognition Algorithm Using Multi-knowledge Distillation [10.71381120193733]
Inertial sensor-based human activity recognition (HAR) is the base of many human-centered mobile applications.
We design a multi-level HAR modeling pipeline called Stage-Logits-Memory Distillation (Dist) based on the widely-used MobileNet.
By paying more attention to the frequency-related features during the distillation process, the SMLDist improves the HAR classification robustness of the students.
arXiv Detail & Related papers (2021-07-06T09:01:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.