論文の概要: Deep Copula Classifier: Theory, Consistency, and Empirical Evaluation
- arxiv url: http://arxiv.org/abs/2505.22997v3
- Date: Mon, 27 Oct 2025 00:28:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 19:54:32.351482
- Title: Deep Copula Classifier: Theory, Consistency, and Empirical Evaluation
- Title(参考訳): 深部コピュラ分類器:理論・一貫性・経験的評価
- Authors: Agnideep Aich, Ashit Baran Aich,
- Abstract要約: ディープコピュラ(Deep Copula、DCC)は、依存モデルから境界推定を分離するクラス条件生成モデルである。
DCCは解釈可能で、ベイズ整合であり、過剰リスク$O(nr/(2r+d))$$$r$-smooth copulasを達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the Deep Copula Classifier (DCC), a class-conditional generative model that separates marginal estimation from dependence modeling using neural copula densities. DCC is interpretable, Bayes-consistent, and achieves excess-risk $O(n^{-r/(2r+d)})$ for $r$-smooth copulas. In a controlled two-class study with strong dependence ($|\rho|=0.995$), DCC learns Bayes-aligned decision regions. With oracle or pooled marginals, it nearly reaches the best possible performance (accuracy $\approx 0.971$; ROC-AUC $\approx 0.998$). As expected, per-class KDE marginals perform less well (accuracy $0.873$; ROC-AUC $0.957$; PR-AUC $0.966$). On the Pima Indians Diabetes dataset, calibrated DCC ($\tau=1$) achieves accuracy $0.879$, ROC-AUC $0.936$, and PR-AUC $0.870$, outperforming Logistic Regression, SVM (RBF), and Naive Bayes, and matching Logistic Regression on the lowest Expected Calibration Error (ECE). Random Forest is also competitive (accuracy $0.892$; ROC-AUC $0.933$; PR-AUC $0.880$). Directly modeling feature dependence yields strong, well-calibrated performance with a clear probabilistic interpretation, making DCC a practical, theoretically grounded alternative to independence-based classifiers.
- Abstract(参考訳): 本稿では,ニューラルコプラ密度を用いた依存モデルから境界推定を分離するクラス条件生成モデルであるDeep Copula Classifier (DCC)を提案する。
DCC は解釈可能で、ベイズ整合であり、過剰リスク $O(n^{-r/(2r+d)})$$r$-smooth copulas を達成する。
強い依存(|\rho|=0.995$)を持つ2クラスの研究において、DCCはベイズに沿った決定領域を学習する。
オラクルやプールされた限界値では、最高のパフォーマンス(精度$\approx 0.971$; ROC-AUC $\approx 0.998$; 精度$\approx 0.998$)に達する。
予想通り、クラスごとのKDE限界値の精度は低い(精度は0.873$; ROC-AUC $0.957$; PR-AUC $0.966$; PR-AUC $0.966$)。
Pima Indians Diabetesデータセットでは、キャリブレーションされたDCC(\tau=1$)が精度$0.879$、ROC-AUC $0.936$、PR-AUC $0.870$、パフォーマンスのロジスティック回帰、SVM(RBF)、Naive Bayesを達成し、最小のキャリブレーションエラー(ECE)でロジスティック回帰をマッチングする。
ランサムフォレストも競争力がある(精度は0.892$、ROC-AUCは0.933$、PR-AUCは0.880$)。
特徴依存を直接モデル化すると、明らかな確率論的解釈で、強くよく校正された性能が得られるため、DCCは独立性に基づく分類器に代わる実用的、理論的に基礎付けられた代替品となる。
関連論文リスト
- Lattice-Based Pruning in Recurrent Neural Networks via Poset Modeling [0.0]
リカレントニューラルネットワーク(RNN)はシーケンスモデリングタスクの中心であるが、その高い計算複雑性はスケーラビリティとリアルタイムデプロイメントの課題を引き起こす。
本稿では,RNNを部分的に順序付けられた集合(命題)としてモデル化し,対応する依存格子を構成する新しいフレームワークを提案する。
既約ニューロンを同定することにより、格子ベースのプルーニングアルゴリズムは、冗長なニューロンを除去しながら、重要な接続を選択的に保持する。
論文 参考訳(メタデータ) (2025-02-23T10:11:38Z) - Deep-Relative-Trust-Based Diffusion for Decentralized Deep Learning [12.883347524020724]
分散学習戦略により、エージェントの集合は集中集約やオーケストレーションを必要とせずに、ローカルデータセットから効率的に学習することができる。
本稿では,最近導入されたニューラルネットワークの類似度尺度であるディープ・リレーショナル・トラスト(DRT)に基づく,DRT拡散と呼ばれる新しい分散学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-06T17:31:36Z) - Geometric sparsification in recurrent neural networks [0.8851237804522972]
大きなニューラルモデルを実行する際の計算コストを改善するための一般的なテクニックはスパース化である。
本稿では,リカレントニューラルネット(RNN)のスペーサー化手法を提案する。
変調正則化はより安定なリカレントニューラルネットを誘導し、90%以上の高忠実度モデルを実現することを示す。
論文 参考訳(メタデータ) (2024-06-10T14:12:33Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
本稿では,従来の注意機構の2次複雑さに対処する新しいアーキテクチャであるOrchidを紹介する。
このアーキテクチャのコアには、新しいデータ依存のグローバル畳み込み層があり、入力シーケンスに条件付きカーネルを文脈的に適応させる。
言語モデリングや画像分類など,複数の領域にまたがるモデルの評価を行い,その性能と汎用性を強調した。
論文 参考訳(メタデータ) (2024-02-28T17:36:45Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Deep Archimedean Copulas [98.96141706464425]
ACNetは、構造的特性を強制する、新しい差別化可能なニューラルネットワークアーキテクチャである。
我々は、ACNetが共通のアルキメデスコピュラスを近似し、データに適合する可能性のある新しいコプラを生成することができることを示した。
論文 参考訳(メタデータ) (2020-12-05T22:58:37Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
我々は,CNNにおいて,畳み込みカーネル間の構造正則化を導入する。
我々はCNNがパラメータや計算量を劇的に減らして性能を維持していることを示す。
論文 参考訳(メタデータ) (2020-09-04T20:41:47Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。