論文の概要: $K^2$VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2505.23017v2
- Date: Fri, 30 May 2025 03:12:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 12:43:13.146327
- Title: $K^2$VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
- Title(参考訳): K^2$VAE:確率的時系列予測のためのKoopman-Kalman拡張変分オートエンコーダ
- Authors: Xingjian Wu, Xiangfei Qiu, Hongfan Gao, Jilin Hu, Bin Yang, Chenjuan Guo,
- Abstract要約: 確率的時系列予測(PTSF)は、経済、エネルギー、輸送など様々な分野における意思決定において重要な役割を果たしている。
我々は、非線形時系列を線形力学系に変換する効率的なVAEベースの生成モデルであるK2$VAEを紹介する。
K2$VAEは、短期および長期のPTSFにおいて最先端のメソッドより優れており、より効率的で正確なソリューションを提供する。
- 参考スコア(独自算出の注目度): 11.83736650205371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic Time Series Forecasting (PTSF) plays a crucial role in decision-making across various fields, including economics, energy, and transportation. Most existing methods excell at short-term forecasting, while overlooking the hurdles of Long-term Probabilistic Time Series Forecasting (LPTSF). As the forecast horizon extends, the inherent nonlinear dynamics have a significant adverse effect on prediction accuracy, and make generative models inefficient by increasing the cost of each iteration. To overcome these limitations, we introduce $K^2$VAE, an efficient VAE-based generative model that leverages a KoopmanNet to transform nonlinear time series into a linear dynamical system, and devises a KalmanNet to refine predictions and model uncertainty in such linear system, which reduces error accumulation in long-term forecasting. Extensive experiments demonstrate that $K^2$VAE outperforms state-of-the-art methods in both short- and long-term PTSF, providing a more efficient and accurate solution.
- Abstract(参考訳): 確率的時系列予測(PTSF)は、経済、エネルギー、輸送など様々な分野における意思決定において重要な役割を果たしている。
既存の手法のほとんどは、長期確率的時系列予測(LPTSF)のハードルを乗り越えながら、短期予測において優れている。
予測の地平線が広がるにつれて、固有非線形力学は予測精度に有意な悪影響を及ぼし、各反復のコストを増大させることで生成モデルを非効率にする。
このような制約を克服するために,K^2$VAEという,非線形時系列を線形力学系に変換する効率的なVAEベースの生成モデルを導入し,長期予測における誤差蓄積を低減し,予測やモデルの不確実性を改良するKalmanNetを考案した。
大規模な実験により、K^2$VAEは短期および長期のPTSFにおいて最先端の手法より優れており、より効率的で正確な解が得られることが示された。
関連論文リスト
- Does Scaling Law Apply in Time Series Forecasting? [2.127584662240465]
我々は,kレベルパラメータのみを用いて競合性能を実現する超軽量予測モデルであるAlinearを提案する。
7つのベンチマークデータセットの実験では、Alinearが大規模モデルよりも一貫して優れていることが示されている。
この研究は、より大きなモデルが本質的に優れているという一般的な信念に挑戦し、より効率的な時系列モデリングへのパラダイムシフトを示唆している。
論文 参考訳(メタデータ) (2025-05-15T11:04:39Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための因果変換器Timer-XLを提案する。
大規模な事前トレーニングに基づいて、Timer-XLは最先端のゼロショット性能を達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - MixLinear: Extreme Low Resource Multivariate Time Series Forecasting with 0.1K Parameters [6.733646592789575]
時系列予測(LTSF)は、パターンや傾向を特定するために、大量の時系列データを分析することによって、長期的な価値を予測する。
トランスフォーマーベースのモデルは高い予測精度を提供するが、ハードウェア制約のあるデバイスにデプロイするには計算集約的すぎることが多い。
資源制約のあるデバイスに特化して設計された超軽量時系列予測モデルであるMixLinearを提案する。
論文 参考訳(メタデータ) (2024-10-02T23:04:57Z) - OFTER: An Online Pipeline for Time Series Forecasting [3.9962751777898955]
OFTERは、中規模の多変量時系列に適した時系列予測パイプラインである。
オンラインタスク用に特別に設計されており、解釈可能な出力を持ち、いくつかの最先端のアートベースラインを上回ります。
アルゴリズムの計算効率、オンラインの性質、低信号対雑音方式での運用能力により、OFTERは金融時系列問題に理想的なアプローチとなる。
論文 参考訳(メタデータ) (2023-04-08T00:18:03Z) - EgPDE-Net: Building Continuous Neural Networks for Time Series
Prediction with Exogenous Variables [22.145726318053526]
現在の連続法では、変数間の系列間相関と時間依存性はめったに考慮されない。
未知のPDEシステムを学習するための任意のステップ予測のための連続時間モデルを提案する。
論文 参考訳(メタデータ) (2022-08-03T08:34:31Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - On projection methods for functional time series forecasting [0.0]
関数時系列(FTS)予測のための2つの非パラメトリック手法
一段階の予測と動的更新の両方に対処する。
これらの方法は、シミュレーションデータ、日々の電力需要、NOx排出に適用される。
論文 参考訳(メタデータ) (2021-05-10T14:24:38Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。