Efficient Bayes Inference in Neural Networks through Adaptive Importance
Sampling
- URL: http://arxiv.org/abs/2210.00993v2
- Date: Thu, 13 Apr 2023 07:47:48 GMT
- Title: Efficient Bayes Inference in Neural Networks through Adaptive Importance
Sampling
- Authors: Yunshi Huang and Emilie Chouzenoux and Victor Elvira and
Jean-Christophe Pesquet
- Abstract summary: In BNNs, a complete posterior distribution of the unknown weight and bias parameters of the network is produced during the training stage.
This feature is useful in countless machine learning applications.
It is particularly appealing in areas where decision-making has a crucial impact, such as medical healthcare or autonomous driving.
- Score: 19.518237361775533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian neural networks (BNNs) have received an increased interest in the
last years. In BNNs, a complete posterior distribution of the unknown weight
and bias parameters of the network is produced during the training stage. This
probabilistic estimation offers several advantages with respect to point-wise
estimates, in particular, the ability to provide uncertainty quantification
when predicting new data. This feature inherent to the Bayesian paradigm, is
useful in countless machine learning applications. It is particularly appealing
in areas where decision-making has a crucial impact, such as medical healthcare
or autonomous driving. The main challenge of BNNs is the computational cost of
the training procedure since Bayesian techniques often face a severe curse of
dimensionality. Adaptive importance sampling (AIS) is one of the most prominent
Monte Carlo methodologies benefiting from sounded convergence guarantees and
ease for adaptation. This work aims to show that AIS constitutes a successful
approach for designing BNNs. More precisely, we propose a novel algorithm
PMCnet that includes an efficient adaptation mechanism, exploiting geometric
information on the complex (often multimodal) posterior distribution. Numerical
results illustrate the excellent performance and the improved exploration
capabilities of the proposed method for both shallow and deep neural networks.
Related papers
- Model and Feature Diversity for Bayesian Neural Networks in Mutual Learning [33.629630904922465]
We propose a novel approach to improve BNNs performance through deep mutual learning.
Experimental results demonstrate significant improvements in the classification accuracy, negative log-likelihood, and expected calibration error.
arXiv Detail & Related papers (2024-07-03T00:25:25Z) - On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors [2.3265565167163906]
Bayesian neural networks are a promising approach for modeling uncertainties in deep neural networks.
generating samples from the posterior distribution of neural networks is a major challenge.
One advance in that direction would be the incorporation of adaptive step sizes into Monte Carlo Markov chain sampling algorithms.
In this paper, we demonstrate that these methods can have a substantial bias in the distribution they sample, even in the limit of vanishing step sizes and at full batch size.
arXiv Detail & Related papers (2024-03-13T15:21:14Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Learning Active Subspaces for Effective and Scalable Uncertainty
Quantification in Deep Neural Networks [13.388835540131508]
We propose a novel scheme for constructing a low-dimensional subspace of the neural network parameters.
We demonstrate that the significantly reduced active subspace enables effective and scalable Bayesian inference.
Our approach provides reliable predictions with robust uncertainty estimates for various regression tasks.
arXiv Detail & Related papers (2023-09-06T15:00:36Z) - Masked Bayesian Neural Networks : Theoretical Guarantee and its
Posterior Inference [1.2722697496405464]
We propose a new node-sparse BNN model which has good theoretical properties and is computationally feasible.
We prove that the posterior concentration rate to the true model is near minimax optimal and adaptive to the smoothness of the true model.
In addition, we develop a novel MCMC algorithm which makes the Bayesian inference of the node-sparse BNN model feasible in practice.
arXiv Detail & Related papers (2023-05-24T06:16:11Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.