Improved Last-Iterate Convergence of Shuffling Gradient Methods for Nonsmooth Convex Optimization
- URL: http://arxiv.org/abs/2505.23056v1
- Date: Thu, 29 May 2025 03:53:45 GMT
- Title: Improved Last-Iterate Convergence of Shuffling Gradient Methods for Nonsmooth Convex Optimization
- Authors: Zijian Liu, Zhengyuan Zhou,
- Abstract summary: We show that Random Reshuffle ($textsfRR$) and Single Shuffle ($textsfSS$) strategies are both provably faster than Proximal GD.<n>As an important implication, we give the first (nearly) optimal convergence result for the suffix average under the $textsfRR$ sampling scheme.
- Score: 21.865728815935665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the convergence of the shuffling gradient method, a popular algorithm employed to minimize the finite-sum function with regularization, in which functions are passed to apply (Proximal) Gradient Descent (GD) one by one whose order is determined by a permutation on the indices of functions. In contrast to its easy implementation and effective performance in practice, the theoretical understanding remains limited. A recent advance by (Liu & Zhou, 2024b) establishes the first last-iterate convergence results under various settings, especially proving the optimal rates for smooth (strongly) convex optimization. However, their bounds for nonsmooth (strongly) convex functions are only as fast as Proximal GD. In this work, we provide the first improved last-iterate analysis for the nonsmooth case demonstrating that the widely used Random Reshuffle ($\textsf{RR}$) and Single Shuffle ($\textsf{SS}$) strategies are both provably faster than Proximal GD, reflecting the benefit of randomness. As an important implication, we give the first (nearly) optimal convergence result for the suffix average under the $\textsf{RR}$ sampling scheme in the general convex case, matching the lower bound shown by (Koren et al., 2022).
Related papers
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
We focus on the class of (strongly) convex $(L0)$-smooth functions and derive new convergence guarantees for several existing methods.<n>In particular, we derive improved convergence rates for Gradient Descent with smoothnessed Gradient Clipping and for Gradient Descent with Polyak Stepsizes.
arXiv Detail & Related papers (2024-09-23T13:11:37Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
This work studies problems with zero-order noisy oracle information under the assumption that the objective function is highly smooth.
We consider two kinds of zero-order projected gradient descent algorithms.
arXiv Detail & Related papers (2023-06-03T17:05:13Z) - Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises:
High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation [22.758674468435302]
In a heavy-tailed noise regime, the difference between the gradient and the true rate is assumed to have a finite $p-th moment.
This paper provides a comprehensive analysis of nonsmooth convex optimization with heavy-tailed noises.
arXiv Detail & Related papers (2023-03-22T03:05:28Z) - Near-Optimal Non-Convex Stochastic Optimization under Generalized
Smoothness [21.865728815935665]
Two recent works established the $O(epsilon-3)$ sample complexity to obtain an $O(epsilon)$-stationary point.
However, both require a large batch size on the order of $mathrmploy(epsilon-1)$, which is not only computationally burdensome but also unsuitable for streaming applications.
In this work, we solve the prior two problems simultaneously by revisiting a simple variant of the STORM algorithm.
arXiv Detail & Related papers (2023-02-13T00:22:28Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Accelerated Single-Call Methods for Constrained Min-Max Optimization [5.266784779001398]
Existing methods either require two gradient calls or two projections in each iteration, which may costly in some applications.
In this paper, we first show that a variant of the Optimistic Gradient (RGOG) has a rich set of non-comonrate min-max convergence rate problems.
Our convergence rates hold for standard measures such as and the natural and the natural.
arXiv Detail & Related papers (2022-10-06T17:50:42Z) - Sampling without Replacement Leads to Faster Rates in Finite-Sum Minimax
Optimization [12.794526174053134]
We analyze convergence rates of gradient algorithms for smooth finite-sum minimax optimization.
We show that, for many such algorithms, sampling points without replacement leads to faster convergence compared to sampling with replacement.
arXiv Detail & Related papers (2022-06-07T00:37:37Z) - Accelerated SGD for Non-Strongly-Convex Least Squares [14.010916616909743]
We consider approximation for the least squares regression problem in the non-strongly convex setting.
We present the first practical algorithm that achieves the optimal prediction error rates in terms of dependence on the noise of the problem.
arXiv Detail & Related papers (2022-03-03T14:39:33Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - SGD with shuffling: optimal rates without component convexity and large
epoch requirements [60.65928290219793]
We consider the RandomShuffle (shuffle at the beginning of each epoch) and SingleShuffle (shuffle only once)
We establish minimax optimal convergence rates of these algorithms up to poly-log factor gaps.
We further sharpen the tight convergence results for RandomShuffle by removing the drawbacks common to all prior arts.
arXiv Detail & Related papers (2020-06-12T05:00:44Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.