論文の概要: Loss-Guided Model Sharing and Local Learning Correction in Decentralized Federated Learning for Crop Disease Classification
- arxiv url: http://arxiv.org/abs/2505.23063v1
- Date: Thu, 29 May 2025 04:12:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.669873
- Title: Loss-Guided Model Sharing and Local Learning Correction in Decentralized Federated Learning for Crop Disease Classification
- Title(参考訳): 作物病分類のための分散型フェデレーション学習における損失誘導モデル共有と局所学習補正
- Authors: Denis Mamba Kabala, Adel Hafiane, Laurent Bobelin, Raphael Canals,
- Abstract要約: 本稿では、検証損失(Loss_val)を用いて、ピア間のモデル共有を誘導し、重み付けパラメータによって制御される適応的損失関数を介して局所学習を補正する、分散型フェデレートラーニング(DFL)フレームワークを提案する。
その結果、DFLアプローチは精度と収束速度を向上するだけでなく、異種データ環境における一般化と堅牢性の向上も保証している。
- 参考スコア(独自算出の注目度): 3.344876133162209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crop disease detection and classification is a critical challenge in agriculture, with major implications for productivity, food security, and environmental sustainability. While deep learning models such as CNN and ViT have shown excellent performance in classifying plant diseases from images, their large-scale deployment is often limited by data privacy concerns. Federated Learning (FL) addresses this issue, but centralized FL remains vulnerable to single-point failures and scalability limits. In this paper, we introduce a novel Decentralized Federated Learning (DFL) framework that uses validation loss (Loss_val) both to guide model sharing between peers and to correct local training via an adaptive loss function controlled by weighting parameter. We conduct extensive experiments using PlantVillage datasets with three deep learning architectures (ResNet50, VGG16, and ViT_B16), analyzing the impact of weighting parameter, the number of shared models, the number of clients, and the use of Loss_val versus Loss_train of other clients. Results demonstrate that our DFL approach not only improves accuracy and convergence speed, but also ensures better generalization and robustness across heterogeneous data environments making it particularly well-suited for privacy-preserving agricultural applications.
- Abstract(参考訳): 作物病の検出と分類は農業において重要な課題であり、生産性、食料安全保障、環境の持続可能性に大きな影響を及ぼす。
CNNやViTといったディープラーニングモデルは、イメージから植物病を分類する上で優れたパフォーマンスを示しているが、大規模なデプロイメントはデータプライバシの問題によって制限されることが多い。
フェデレートラーニング(FL)はこの問題に対処するが、集中型FLはシングルポイント障害やスケーラビリティ制限に弱いままである。
本稿では,検証損失(Loss_val)を利用して,ピア間のモデル共有をガイドし,重み付けパラメータによって制御される適応的損失関数を用いて局所学習を補正する,分散型フェデレートラーニング(DFL)フレームワークを提案する。
我々は,3つのディープラーニングアーキテクチャ(ResNet50,VGG16,ViT_B16)を用いたPlantVillageデータセットを用いた広範な実験を行い,重み付けパラメータの影響,共有モデル数,クライアント数,ロス_valとロス_trainの比較を行った。
その結果、我々のDFLアプローチは精度と収束速度を向上するだけでなく、不均一なデータ環境におけるより高度な一般化と堅牢性を保証し、特にプライバシ保護型農業アプリケーションに適していることが示された。
関連論文リスト
- A Federated Random Forest Solution for Secure Distributed Machine Learning [44.99833362998488]
本稿では,データプライバシを保護し,分散環境での堅牢な性能を提供するランダムフォレスト分類器のためのフェデレート学習フレームワークを提案する。
PySyftをセキュアでプライバシを意識した計算に活用することにより、複数の機関がローカルに保存されたデータ上でランダムフォレストモデルを協調的にトレーニングすることが可能となる。
2つの実世界の医療ベンチマークの実験は、フェデレートされたアプローチが、集中型のメソッドの最大9%のマージンで、競争の正確性を維持していることを示している。
論文 参考訳(メタデータ) (2025-05-12T21:40:35Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - FedHPL: Efficient Heterogeneous Federated Learning with Prompt Tuning and Logit Distillation [32.305134875959226]
フェデレートラーニング(FL)は、分散クライアントが中央サーバーでモデルを協調訓練できるプライバシー保護パラダイムである。
我々はパラメータ効率の高い$textbfFed$erated Learning framework for $textbfH$eterogeneous settingsを提案する。
我々のフレームワークは最先端のFLアプローチより優れており、オーバーヘッドもトレーニングラウンドも少なくなっている。
論文 参考訳(メタデータ) (2024-05-27T15:25:32Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
フェデレートラーニング(FL)は、分散クライアントがデータのプライバシを保持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,モデル収束とFLシステム全体の性能を改善するために,CP-CFL(Contrative Pre-training-based Clustered Federated Learning)を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:44:26Z) - Federated Meta-Learning for Few-Shot Fault Diagnosis with Representation
Encoding [21.76802204235636]
本稿では,数発の故障診断のための表現符号化ベースフェデレーションメタラーニング(REFML)を提案する。
REFMLは、トレーニングクライアントの固有の一般化を活用して、効果的に、アウト・オブ・ディストリビューションの利点に変換する。
同じ機器の非表示作業条件でテストすると2.17%-6.50%、全く見えない機器でテストすると13.44%-18.33%の精度で精度が向上する。
論文 参考訳(メタデータ) (2023-10-13T10:48:28Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Federated Survival Analysis with Discrete-Time Cox Models [0.46331617589391827]
私たちは、フェデレートラーニング(FL)を用いて、異なるセンターに位置する分散データセットから機械学習モデルを構築します。
得られたモデルが、いくつかの悪い設定で重要なパフォーマンス損失を被る可能性があることを示す。
このアプローチを用いて、合成データに基づく標準FL技術と、The Cancer Genome Atlas (TCGA)による実世界のデータセットを用いて生存モデルを訓練する。
論文 参考訳(メタデータ) (2020-06-16T08:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。