Machine Learning Framework for Characterizing Processing-Structure Relationship in Block Copolymer Thin Films
- URL: http://arxiv.org/abs/2505.23064v1
- Date: Thu, 29 May 2025 04:14:42 GMT
- Title: Machine Learning Framework for Characterizing Processing-Structure Relationship in Block Copolymer Thin Films
- Authors: Bradley Lamb, Saroj Upreti, Yunfei Wang, Daniel Struble, Chenhui Zhu, Guillaume Freychet, Xiaodan Gu, Boran Ma,
- Abstract summary: The morphology of block copolymers (BCPs) critically influences material properties and applications.<n>This work introduces a machine learning (ML)-enabled framework for analyzing grazing incidence small-angle X-ray scattering (GISAXS) data and atomic force microscopy (AFM) images to characterize BCP thin film morphology.
- Score: 1.4698426549994696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The morphology of block copolymers (BCPs) critically influences material properties and applications. This work introduces a machine learning (ML)-enabled, high-throughput framework for analyzing grazing incidence small-angle X-ray scattering (GISAXS) data and atomic force microscopy (AFM) images to characterize BCP thin film morphology. A convolutional neural network was trained to classify AFM images by morphology type, achieving 97% testing accuracy. Classified images were then analyzed to extract 2D grain size measurements from the samples in a high-throughput manner. ML models were developed to predict morphological features based on processing parameters such as solvent ratio, additive type, and additive ratio. GISAXS-based properties were predicted with strong performances ($R^2$ > 0.75), while AFM-based property predictions were less accurate ($R^2$ < 0.60), likely due to the localized nature of AFM measurements compared to the bulk information captured by GISAXS. Beyond model performance, interpretability was addressed using Shapley Additive exPlanations (SHAP). SHAP analysis revealed that the additive ratio had the largest impact on morphological predictions, where additive provides the BCP chains with increased volume to rearrange into thermodynamically favorable morphologies. This interpretability helps validate model predictions and offers insight into parameter importance. Altogether, the presented framework combining high-throughput characterization and interpretable ML offers an approach to exploring and optimizing BCP thin film morphology across a broad processing landscape.
Related papers
- Aligned Manifold Property and Topology Point Clouds for Learning Molecular Properties [55.2480439325792]
This work introduces AMPTCR, a molecular surface representation that combines local quantum-derived scalar fields and custom topological descriptors within an aligned point cloud format.<n>For molecular weight, results confirm that AMPTCR encodes physically meaningful data, with a validation R2 of 0.87.<n>In the bacterial inhibition task, AMPTCR enables both classification and direct regression of E. coli inhibition values.
arXiv Detail & Related papers (2025-07-22T04:35:50Z) - Eigenspectrum Analysis of Neural Networks without Aspect Ratio Bias [4.503999875371634]
Diagnosing deep neural networks (DNNs) through the eigenspectrum of weight matrices has been an active area of research in recent years.<n>We address the impact of the aspect ratio of weight matrices on estimated heavytailness metrics.<n>We propose FARMS, a method that normalizes the weight matrices by subsampling submatrices with a fixed aspect ratio.
arXiv Detail & Related papers (2025-06-06T17:59:28Z) - Pure Component Property Estimation Framework Using Explainable Machine Learning Methods [4.8601239628666635]
The molecular representation method based on the connectivity matrix effectively considers atomic bonding relationships to automatically generate features.<n>The prediction results for normal boiling point (Tb), liquid molar volume, critical temperature (Tc) and critical pressure (Pc) obtained using Artificial Neural Network and Gaussian Process Regression models.<n>To enhance the interpretability of the model, a feature analysis method based on Shapley values is employed to determine the contribution of each feature to the property predictions.
arXiv Detail & Related papers (2025-05-14T20:21:23Z) - Machine learning surrogate models of many-body dispersion interactions in polymer melts [40.83978401377059]
We introduce a machine learning surrogate model specifically designed to predict MBD forces in polymer melts.<n>Our model is based on a trimmed SchNet architecture that selectively retains the most relevant atomic connections.<n>Characterized by high computational efficiency, our surrogate model enables practical incorporation of MBD effects into large-scale molecular simulations.
arXiv Detail & Related papers (2025-03-19T12:15:35Z) - An Interpretable ML-based Model for Predicting p-y Curves of Monopile Foundations in Sand [5.0649910056131775]
This study develops an interpretable machine learning-based model for predicting p-y curves of monopile foundations.<n>The results demonstrate that the model achieves superior predictive accuracy.
arXiv Detail & Related papers (2025-01-08T03:00:34Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
We present a unifying perspective on recent results on ridge regression.<n>We use the basic tools of random matrix theory and free probability, aimed at readers with backgrounds in physics and deep learning.<n>Our results extend and provide a unifying perspective on earlier models of scaling laws.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Data-free Weight Compress and Denoise for Large Language Models [96.68582094536032]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.<n>We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Machine Learning Small Molecule Properties in Drug Discovery [44.62264781248437]
We review a wide range of properties, including binding affinities, solubility, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
We discuss existing popular descriptors and embeddings, such as chemical fingerprints and graph-based neural networks.
Finally, techniques to provide an understanding of model predictions, especially for critical decision-making in drug discovery are assessed.
arXiv Detail & Related papers (2023-08-02T22:18:41Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Dynamic multi feature-class Gaussian process models [0.0]
This study presents a statistical modelling method for automatic learning of shape, pose and intensity features in medical images.
A DMFC-GPM is a Gaussian process (GP)-based model with a shared latent space that encodes linear and non-linear variation.
The model performance results suggest that this new modelling paradigm is robust, accurate, accessible, and has potential applications.
arXiv Detail & Related papers (2021-12-08T15:12:47Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - Numerical simulation, clustering and prediction of multi-component
polymer precipitation [0.7349727826230861]
Multi-component polymer systems are of interest in organic photovoltaic and drug delivery applications.
We use a modified Cahn-Hilliard model to simulate polymer precipitation.
To reduce the required computational costs, we apply machine learning techniques for clustering and consequent prediction of the simulated polymer blend images.
arXiv Detail & Related papers (2020-07-10T09:10:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.