Gradient Boosting Decision Tree with LSTM for Investment Prediction
- URL: http://arxiv.org/abs/2505.23084v1
- Date: Thu, 29 May 2025 04:38:41 GMT
- Title: Gradient Boosting Decision Tree with LSTM for Investment Prediction
- Authors: Chang Yu, Fang Liu, Jie Zhu, Shaobo Guo, Yifan Gao, Zhongheng Yang, Meiwei Liu, Qianwen Xing,
- Abstract summary: The framework processes time-series financial data and evaluates performance using seven models.<n>Key metrics, including MAE, R-squared, MSE, and RMSE, are used to establish benchmarks across different time scales.<n> Experimental results show that the proposed framework improves accuracy by 10 to 15 percent compared to individual models.
- Score: 10.423142507018577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a hybrid framework combining LSTM (Long Short-Term Memory) networks with LightGBM and CatBoost for stock price prediction. The framework processes time-series financial data and evaluates performance using seven models: Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs), Bidirectional LSTM (BiLSTM), vanilla LSTM, XGBoost, LightGBM, and standard Neural Networks (NNs). Key metrics, including MAE, R-squared, MSE, and RMSE, are used to establish benchmarks across different time scales. Building on these benchmarks, we develop an ensemble model that combines the strengths of sequential and tree-based approaches. Experimental results show that the proposed framework improves accuracy by 10 to 15 percent compared to individual models and reduces error during market changes. This study highlights the potential of ensemble methods for financial forecasting and provides a flexible design for integrating new machine learning techniques.
Related papers
- An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model [4.097563258332958]
This research proposes a cutting-edge ensemble deep learning framework for stock price prediction by combining three advanced neural network architectures.<n>The framework uses rich set of technical indicators and it scales its predictors based on the current market situation.<n>It has a very important application in algorithmic trading, risk analysis, and control and decision-making for finance professions and scholars.
arXiv Detail & Related papers (2025-03-28T07:20:40Z) - Stock Price Prediction Using a Hybrid LSTM-GNN Model: Integrating Time-Series and Graph-Based Analysis [4.833815605196965]
This paper presents a novel hybrid model that integrates long-short-term memory (LSTM) networks and Graph Neural Networks (GNNs)<n>The LSTM component adeptly captures temporal patterns in stock price data, effectively modeling the time series dynamics of financial markets.<n>Experiments conducted on historical stock data demonstrate that our hybrid LSTM-GNN model achieves a mean square error (MSE) of 0.00144.
arXiv Detail & Related papers (2025-02-19T15:09:13Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - 1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index
Forecasting [6.05458608266581]
This study investigates the potential of integrating a 1D CapsNet with an LSTM network for multi-step stock index forecasting.
To this end, a hybrid 1D-CapsNet-LSTM model is introduced, which utilizes a 1D CapsNet to generate high-level capsules.
The proposed 1D-CapsNet-LSTM model consistently outperforms baseline models in two key aspects.
arXiv Detail & Related papers (2023-10-03T14:33:34Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
This paper presents a novel method to train quantized RNNLMs from scratch using alternating direction methods of multipliers (ADMM)
Experiments on two tasks suggest the proposed ADMM quantization achieved a model size compression factor of up to 31 times over the full precision baseline RNNLMs.
arXiv Detail & Related papers (2021-11-29T09:30:06Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results.
We achieve classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively.
We formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain.
arXiv Detail & Related papers (2020-10-15T17:45:18Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
We propose a new LSTM variant called embedded convolutional LSTM (E NeuralTM)
In ETM a group of different 1D convolutions is embedded into the LSTM structure. Through this, the temporal information is preserved between and within windows.
We show the superiority of our proposed ETM approach over the state-of-the-art approaches on several widely used benchmark data sets for RUL Estimation.
arXiv Detail & Related papers (2020-08-10T08:34:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.