LODGE: Level-of-Detail Large-Scale Gaussian Splatting with Efficient Rendering
- URL: http://arxiv.org/abs/2505.23158v1
- Date: Thu, 29 May 2025 06:50:57 GMT
- Title: LODGE: Level-of-Detail Large-Scale Gaussian Splatting with Efficient Rendering
- Authors: Jonas Kulhanek, Marie-Julie Rakotosaona, Fabian Manhardt, Christina Tsalicoglou, Michael Niemeyer, Torsten Sattler, Songyou Peng, Federico Tombari,
- Abstract summary: We present a novel level-of-detail (LOD) method for 3D Gaussian Splatting on memory-constrained devices.<n>Our approach iteratively selects optimal subsets of Gaussians based on camera distance.<n>Our method achieves state-of-the-art performance on both outdoor (Hierarchical 3DGS) and indoor (Zip-NeRF) datasets.
- Score: 68.93333348474988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a novel level-of-detail (LOD) method for 3D Gaussian Splatting that enables real-time rendering of large-scale scenes on memory-constrained devices. Our approach introduces a hierarchical LOD representation that iteratively selects optimal subsets of Gaussians based on camera distance, thus largely reducing both rendering time and GPU memory usage. We construct each LOD level by applying a depth-aware 3D smoothing filter, followed by importance-based pruning and fine-tuning to maintain visual fidelity. To further reduce memory overhead, we partition the scene into spatial chunks and dynamically load only relevant Gaussians during rendering, employing an opacity-blending mechanism to avoid visual artifacts at chunk boundaries. Our method achieves state-of-the-art performance on both outdoor (Hierarchical 3DGS) and indoor (Zip-NeRF) datasets, delivering high-quality renderings with reduced latency and memory requirements.
Related papers
- Virtual Memory for 3D Gaussian Splatting [1.278093617645299]
Gaussian Splatting represents a breakthrough in the field of novel view rendering.<n>Recent advances have increased the size of Splatting scenes that can be created.
arXiv Detail & Related papers (2025-06-24T08:31:33Z) - HRGS: Hierarchical Gaussian Splatting for Memory-Efficient High-Resolution 3D Reconstruction [25.968291836648124]
3D Gaussian Splatting (3DGS) has made significant strides in real-time 3D scene reconstruction, but faces memory scalability issues in high-resolution scenarios.<n>We propose Hierarchical Gaussian Splatting (HRGS), a memory-efficient framework with hierarchical block-level optimization.<n>Our method enables high-quality, high-resolution 3D scene reconstruction even under memory constraints.
arXiv Detail & Related papers (2025-06-17T06:35:38Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes [46.64784407920817]
Temporally Compressed 3D Gaussian Splatting (TC3DGS) is a novel technique designed specifically to compress dynamic 3D Gaussian representations.<n>Our experiments across multiple datasets demonstrate that TC3DGS achieves up to 67$times$ compression with minimal or no degradation in visual quality.
arXiv Detail & Related papers (2024-12-07T17:03:09Z) - L3DG: Latent 3D Gaussian Diffusion [74.36431175937285]
L3DG is the first approach for generative 3D modeling of 3D Gaussians through a latent 3D Gaussian diffusion formulation.
We employ a sparse convolutional architecture to efficiently operate on room-scale scenes.
By leveraging the 3D Gaussian representation, the generated scenes can be rendered from arbitrary viewpoints in real-time.
arXiv Detail & Related papers (2024-10-17T13:19:32Z) - SplatLoc: 3D Gaussian Splatting-based Visual Localization for Augmented Reality [50.179377002092416]
We propose an efficient visual localization method capable of high-quality rendering with fewer parameters.
Our method achieves superior or comparable rendering and localization performance to state-of-the-art implicit-based visual localization approaches.
arXiv Detail & Related papers (2024-09-21T08:46:16Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
We propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance.
In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2024-08-07T14:56:34Z) - Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians [18.774112672831155]
3D-GS has shown remarkable rendering fidelity and efficiency compared to NeRF-based neural scene representations.
We introduce Octree-GS, featuring an LOD-structured 3D Gaussian approach supporting level-of-detail decomposition for scene representation.
arXiv Detail & Related papers (2024-03-26T17:39:36Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM [48.190398577764284]
SplaTAM is an approach to enable high-fidelity reconstruction from a single unposed RGB-D camera.
It employs a simple online tracking and mapping system tailored to the underlying Gaussian representation.
Experiments show that SplaTAM achieves up to 2x superior performance in camera pose estimation, map construction, and novel-view synthesis over existing methods.
arXiv Detail & Related papers (2023-12-04T18:53:24Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.