Unsupervised Word-level Quality Estimation for Machine Translation Through the Lens of Annotators (Dis)agreement
- URL: http://arxiv.org/abs/2505.23183v1
- Date: Thu, 29 May 2025 07:20:36 GMT
- Title: Unsupervised Word-level Quality Estimation for Machine Translation Through the Lens of Annotators (Dis)agreement
- Authors: Gabriele Sarti, Vilém Zouhar, Malvina Nissim, Arianna Bisazza,
- Abstract summary: Word-level quality estimation (WQE) aims to automatically identify fine-grained error spans in machine-translated outputs.<n>Modern WQE techniques are often expensive, involving prompting of large language models or ad-hoc training on large amounts of human-labeled data.
- Score: 19.427711407628024
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Word-level quality estimation (WQE) aims to automatically identify fine-grained error spans in machine-translated outputs and has found many uses, including assisting translators during post-editing. Modern WQE techniques are often expensive, involving prompting of large language models or ad-hoc training on large amounts of human-labeled data. In this work, we investigate efficient alternatives exploiting recent advances in language model interpretability and uncertainty quantification to identify translation errors from the inner workings of translation models. In our evaluation spanning 14 metrics across 12 translation directions, we quantify the impact of human label variation on metric performance by using multiple sets of human labels. Our results highlight the untapped potential of unsupervised metrics, the shortcomings of supervised methods when faced with label uncertainty, and the brittleness of single-annotator evaluation practices.
Related papers
- QE4PE: Word-level Quality Estimation for Human Post-Editing [17.17222014168155]
Our QE4PE study investigates the impact of word-level QE on machine translation post-editing.<n>We compare four error-span highlight modalities, including supervised and uncertainty-based word-level QE methods.<n>We find that domain, language and editors' speed are critical factors in determining highlights' effectiveness.
arXiv Detail & Related papers (2025-03-04T22:50:17Z) - Alleviating Distribution Shift in Synthetic Data for Machine Translation Quality Estimation [55.73341401764367]
We introduce ADSQE, a novel framework for alleviating distribution shift in synthetic QE data.<n>ADSQE uses references, i.e., translation supervision signals, to guide both the generation and annotation processes.<n>Experiments demonstrate that ADSQE outperforms SOTA baselines like COMET in both supervised and unsupervised settings.
arXiv Detail & Related papers (2025-02-27T10:11:53Z) - Machine Translation Meta Evaluation through Translation Accuracy
Challenge Sets [92.38654521870444]
We introduce ACES, a contrastive challenge set spanning 146 language pairs.
This dataset aims to discover whether metrics can identify 68 translation accuracy errors.
We conduct a large-scale study by benchmarking ACES on 50 metrics submitted to the WMT 2022 and 2023 metrics shared tasks.
arXiv Detail & Related papers (2024-01-29T17:17:42Z) - BLEURT Has Universal Translations: An Analysis of Automatic Metrics by
Minimum Risk Training [64.37683359609308]
In this study, we analyze various mainstream and cutting-edge automatic metrics from the perspective of their guidance for training machine translation systems.
We find that certain metrics exhibit robustness defects, such as the presence of universal adversarial translations in BLEURT and BARTScore.
In-depth analysis suggests two main causes of these robustness deficits: distribution biases in the training datasets, and the tendency of the metric paradigm.
arXiv Detail & Related papers (2023-07-06T16:59:30Z) - BLEU Meets COMET: Combining Lexical and Neural Metrics Towards Robust
Machine Translation Evaluation [12.407789866525079]
We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena.
We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena.
arXiv Detail & Related papers (2023-05-30T15:50:46Z) - Extrinsic Evaluation of Machine Translation Metrics [78.75776477562087]
It is unclear if automatic metrics are reliable at distinguishing good translations from bad translations at the sentence level.
We evaluate the segment-level performance of the most widely used MT metrics (chrF, COMET, BERTScore, etc.) on three downstream cross-lingual tasks.
Our experiments demonstrate that all metrics exhibit negligible correlation with the extrinsic evaluation of the downstream outcomes.
arXiv Detail & Related papers (2022-12-20T14:39:58Z) - Rethink about the Word-level Quality Estimation for Machine Translation
from Human Judgement [57.72846454929923]
We create a benchmark dataset, emphHJQE, where the expert translators directly annotate poorly translated words.
We propose two tag correcting strategies, namely tag refinement strategy and tree-based annotation strategy, to make the TER-based artificial QE corpus closer to emphHJQE.
The results show our proposed dataset is more consistent with human judgement and also confirm the effectiveness of the proposed tag correcting strategies.
arXiv Detail & Related papers (2022-09-13T02:37:12Z) - HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using
Professional Post-Editing Towards More Effective MT Evaluation [0.0]
In this work, we introduce HOPE, a task-oriented and human-centric evaluation framework for machine translation output.
It contains only a limited number of commonly occurring error types, and use a scoring model with geometric progression of error penalty points (EPPs) reflecting error severity level to each translation unit.
The approach has several key advantages, such as ability to measure and compare less than perfect MT output from different systems, ability to indicate human perception of quality, immediate estimation of the labor effort required to bring MT output to premium quality, low-cost and faster application, as well as higher IRR.
arXiv Detail & Related papers (2021-12-27T18:47:43Z) - BLEU, METEOR, BERTScore: Evaluation of Metrics Performance in Assessing
Critical Translation Errors in Sentiment-oriented Text [1.4213973379473654]
Machine Translation (MT) of the online content is commonly used to process posts written in several languages.
In this paper, we assess the ability of automatic quality metrics to detect critical machine translation errors.
We conclude that there is a need for fine-tuning of automatic metrics to make them more robust in detecting sentiment critical errors.
arXiv Detail & Related papers (2021-09-29T07:51:17Z) - Tangled up in BLEU: Reevaluating the Evaluation of Automatic Machine
Translation Evaluation Metrics [64.88815792555451]
We show that current methods for judging metrics are highly sensitive to the translations used for assessment.
We develop a method for thresholding performance improvement under an automatic metric against human judgements.
arXiv Detail & Related papers (2020-06-11T09:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.