Daunce: Data Attribution through Uncertainty Estimation
- URL: http://arxiv.org/abs/2505.23223v1
- Date: Thu, 29 May 2025 08:08:38 GMT
- Title: Daunce: Data Attribution through Uncertainty Estimation
- Authors: Xingyuan Pan, Chenlu Ye, Joseph Melkonian, Jiaqi W. Ma, Tong Zhang,
- Abstract summary: Training data attribution methods aim to identify which training examples influence a model's predictions on specific test data most.<n> Gradient-based TDA methods rely on gradients and second-order information, limiting their applicability at scale.<n>We introduce Daunce - a simple yet effective data attribution approach through uncertainty estimation.
- Score: 7.809316632545256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training data attribution (TDA) methods aim to identify which training examples influence a model's predictions on specific test data most. By quantifying these influences, TDA supports critical applications such as data debugging, curation, and valuation. Gradient-based TDA methods rely on gradients and second-order information, limiting their applicability at scale. While recent random projection-based methods improve scalability, they often suffer from degraded attribution accuracy. Motivated by connections between uncertainty and influence functions, we introduce Daunce - a simple yet effective data attribution approach through uncertainty estimation. Our method operates by fine-tuning a collection of perturbed models and computing the covariance of per-example losses across these models as the attribution score. Daunce is scalable to large language models (LLMs) and achieves more accurate attribution compared to existing TDA methods. We validate Daunce on tasks ranging from vision tasks to LLM fine-tuning, and further demonstrate its compatibility with black-box model access. Applied to OpenAI's GPT models, our method achieves, to our knowledge, the first instance of data attribution on proprietary LLMs.
Related papers
- Scalable Influence and Fact Tracing for Large Language Model Pretraining [14.598556308631018]
Training data attribution (TDA) methods aim to attribute model outputs back to specific training examples.<n>We refine existing gradient-based methods to work effectively at scale.<n>We release our prompt set and model outputs, along with a web-based visualization tool to explore influential examples.
arXiv Detail & Related papers (2024-10-22T20:39:21Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.<n>Yet their widespread adoption poses challenges regarding data attribution and interpretability.<n>We develop an influence functions framework to address these challenges.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Intriguing Properties of Data Attribution on Diffusion Models [33.77847454043439]
Data attribution seeks to trace desired outputs back to training data.
Data attribution has become a module to properly assign for high-intuitive or copyrighted data.
arXiv Detail & Related papers (2023-11-01T13:00:46Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Estimating Model Performance under Domain Shifts with Class-Specific
Confidence Scores [25.162667593654206]
We introduce class-wise calibration within the framework of performance estimation for imbalanced datasets.
We conduct experiments on four tasks and find the proposed modifications consistently improve the estimation accuracy for imbalanced datasets.
arXiv Detail & Related papers (2022-07-20T15:04:32Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.