Intriguing Properties of Data Attribution on Diffusion Models
- URL: http://arxiv.org/abs/2311.00500v2
- Date: Fri, 15 Mar 2024 12:05:14 GMT
- Title: Intriguing Properties of Data Attribution on Diffusion Models
- Authors: Xiaosen Zheng, Tianyu Pang, Chao Du, Jing Jiang, Min Lin,
- Abstract summary: Data attribution seeks to trace desired outputs back to training data.
Data attribution has become a module to properly assign for high-intuitive or copyrighted data.
- Score: 33.77847454043439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data attribution seeks to trace model outputs back to training data. With the recent development of diffusion models, data attribution has become a desired module to properly assign valuations for high-quality or copyrighted training samples, ensuring that data contributors are fairly compensated or credited. Several theoretically motivated methods have been proposed to implement data attribution, in an effort to improve the trade-off between computational scalability and effectiveness. In this work, we conduct extensive experiments and ablation studies on attributing diffusion models, specifically focusing on DDPMs trained on CIFAR-10 and CelebA, as well as a Stable Diffusion model LoRA-finetuned on ArtBench. Intriguingly, we report counter-intuitive observations that theoretically unjustified design choices for attribution empirically outperform previous baselines by a large margin, in terms of both linear datamodeling score and counterfactual evaluation. Our work presents a significantly more efficient approach for attributing diffusion models, while the unexpected findings suggest that at least in non-convex settings, constructions guided by theoretical assumptions may lead to inferior attribution performance. The code is available at https://github.com/sail-sg/D-TRAK.
Related papers
- Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Model [22.39558434131574]
Existing data attribution methods for diffusion models typically quantify the contribution of a training sample.
We argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss.
We aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance.
arXiv Detail & Related papers (2024-10-24T10:58:17Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Towards a Theoretical Understanding of Memorization in Diffusion Models [76.85077961718875]
Diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI)
We provide a theoretical understanding of memorization in both conditional and unconditional DPMs under the assumption of model convergence.
We propose a novel data extraction method named textbfSurrogate condItional Data Extraction (SIDE) that leverages a time-dependent classifier trained on the generated data as a surrogate condition to extract training data from unconditional DPMs.
arXiv Detail & Related papers (2024-10-03T13:17:06Z) - Pruning then Reweighting: Towards Data-Efficient Training of Diffusion Models [33.09663675904689]
We investigate efficient diffusion training from the perspective of dataset pruning.
Inspired by the principles of data-efficient training for generative models such as generative adversarial networks (GANs), we first extend the data selection scheme used in GANs to DM training.
To further improve the generation performance, we employ a class-wise reweighting approach.
arXiv Detail & Related papers (2024-09-27T20:21:19Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - MissDiff: Training Diffusion Models on Tabular Data with Missing Values [29.894691645801597]
This work presents a unified and principled diffusion-based framework for learning from data with missing values.
We first observe that the widely adopted "impute-then-generate" pipeline may lead to a biased learning objective.
We prove the proposed method is consistent in learning the score of data distributions, and the proposed training objective serves as an upper bound for the negative likelihood in certain cases.
arXiv Detail & Related papers (2023-07-02T03:49:47Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - How to Learn when Data Gradually Reacts to Your Model [10.074466859579571]
We propose a new algorithm, Stateful Performative Gradient Descent (Stateful PerfGD), for minimizing the performative loss even in the presence of these effects.
Our experiments confirm that Stateful PerfGD substantially outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2021-12-13T22:05:26Z) - The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning [25.85044477227461]
Models that are more accurate on the out-of-distribution data relative to this baseline exhibit "effective robustness"
We find that models pre-trained on larger datasets exhibit effective robustness during training that vanishes at convergence.
We discuss several strategies for scaling effective robustness to the high-accuracy regime to improve the out-of-distribution accuracy of state-of-the-art models.
arXiv Detail & Related papers (2021-06-30T06:21:42Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
We introduce a novel debiasing method called confidence regularization.
It discourages models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples.
We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets.
arXiv Detail & Related papers (2020-05-01T11:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.