論文の概要: Generalizability vs. Counterfactual Explainability Trade-Off
- arxiv url: http://arxiv.org/abs/2505.23225v1
- Date: Thu, 29 May 2025 08:17:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.75748
- Title: Generalizability vs. Counterfactual Explainability Trade-Off
- Title(参考訳): 一般化可能性対非現実的説明可能性貿易-Off
- Authors: Fabiano Veglianti, Flavio Giorgi, Fabrizio Silvestri, Gabriele Tolomei,
- Abstract要約: 我々は、$varepsilon$-valid反実確率(varepsilon$-VCP)の概念を導入する。
モデルオーバーフィットにより, $varepsilon$-VCP は増加する傾向にある。
- 参考スコア(独自算出の注目度): 6.3107782051840555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate the relationship between model generalization and counterfactual explainability in supervised learning. We introduce the notion of $\varepsilon$-valid counterfactual probability ($\varepsilon$-VCP) -- the probability of finding perturbations of a data point within its $\varepsilon$-neighborhood that result in a label change. We provide a theoretical analysis of $\varepsilon$-VCP in relation to the geometry of the model's decision boundary, showing that $\varepsilon$-VCP tends to increase with model overfitting. Our findings establish a rigorous connection between poor generalization and the ease of counterfactual generation, revealing an inherent trade-off between generalization and counterfactual explainability. Empirical results validate our theory, suggesting $\varepsilon$-VCP as a practical proxy for quantitatively characterizing overfitting.
- Abstract(参考訳): 本研究では,教師あり学習におけるモデル一般化と対実的説明可能性の関係について検討する。
我々は、$\varepsilon$-valid反ファクト的確率(\varepsilon$-VCP)の概念を導入する。
モデル決定境界の幾何学に関して、$\varepsilon$-VCPの理論解析を行い、モデルオーバーフィッティングにより$\varepsilon$-VCPが増加する傾向があることを示す。
本研究は, 一般化の貧弱さと対実生成の容易さとの間に厳密な関係を築き, 一般化と対実説明可能性の間に固有のトレードオフがあることを明らかにする。
実証的な結果は、オーバーフィッティングを定量的に特徴付けるための実用的なプロキシとして、$\varepsilon$-VCPが提案されている。
関連論文リスト
- I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data? [76.15163242945813]
大規模言語モデル (LLM) は、多くの人が知能の形式を示すと結論づけている。
本稿では,潜在離散変数として表現される人間解釈可能な概念に基づいてトークンを生成する新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2025-03-12T01:21:17Z) - Interaction Asymmetry: A General Principle for Learning Composable Abstractions [27.749478197803256]
相互作用非対称性は、アンタングル化と合成一般化の両方を可能にすることを示す。
本稿では, フレキシブルトランスフォーマーをベースとしたVAEを用いて, デコーダの注意重みに対する新しい正規化器を提案する。
論文 参考訳(メタデータ) (2024-11-12T13:33:26Z) - Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference [9.940560505044122]
本稿では,償却ベイズ推定の効率と精度を向上させる手法を提案する。
我々は,関節モデルの近似表現に基づいて限界確率を推定する。
論文 参考訳(メタデータ) (2023-10-06T17:41:41Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
ブラインドソース分離(BSS)は、変換$f$が可逆であるが未知であるという条件の下で、その混合である$X=f(S)$から観測されていない信号を復元することを目的としている。
このような違反を分析し、その影響を$X$から$S$のブラインドリカバリに与える影響を定量化するための一般的なフレームワークを提案する。
定義された構造的仮定からの偏差に対する一般的なBSS溶出は、明示的な連続性保証という形で、利益的に分析可能であることを示す。
論文 参考訳(メタデータ) (2023-03-17T16:30:51Z) - KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal [70.15267479220691]
モデル強化学習のサンプル複雑性を,生成的分散自由モデルを用いて検討・解析する。
我々の分析は、$varepsilon$が十分小さい場合、$varepsilon$-optimal Policyを見つけるのが、ほぼ最小の最適化であることを示している。
論文 参考訳(メタデータ) (2022-05-27T19:39:24Z) - Outlier-Robust Optimal Transport: Duality, Structure, and Statistical
Applications [25.410110072480187]
ワッサーシュタイン距離は、考慮された分布における外れ値に敏感である。
本稿では, 汚染された各分布から, $varepsilon$outlier mass を除去できる新しいoutlier-robust Wasserstein distance $mathsfW_pvarepsilon$を提案する。
論文 参考訳(メタデータ) (2021-11-02T04:05:45Z) - Measuring Model Fairness under Noisy Covariates: A Theoretical
Perspective [26.704446184314506]
本研究では,雑音情報に基づく機械学習モデルの公平性の測定問題について検討する。
本稿では, 精度の高い公平性評価が可能な弱い条件を特徴付けることを目的とした理論的解析を行う。
論文 参考訳(メタデータ) (2021-05-20T18:36:28Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
本稿では,分離可能なデータの強化に関する高精度な高次元理論を確立する。
統計モデルのクラスでは、ブースティングの普遍性誤差を正確に解析する。
また, 推力試験誤差と最適ベイズ誤差の関係を明示的に説明する。
論文 参考訳(メタデータ) (2020-02-05T00:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。