Diffusion Sampling Path Tells More: An Efficient Plug-and-Play Strategy for Sample Filtering
- URL: http://arxiv.org/abs/2505.23343v1
- Date: Thu, 29 May 2025 11:08:24 GMT
- Title: Diffusion Sampling Path Tells More: An Efficient Plug-and-Play Strategy for Sample Filtering
- Authors: Sixian Wang, Zhiwei Tang, Tsung-Hui Chang,
- Abstract summary: Diffusion models often exhibit inconsistent sample quality due to variations inherent in their sampling trajectories.<n>We introduce CFG-Rejection, an efficient, plug-and-play strategy that filters low-quality samples at an early stage of the denoising process.<n>We validate the effectiveness of CFG-Rejection in image generation through extensive experiments.
- Score: 18.543769006014383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models often exhibit inconsistent sample quality due to stochastic variations inherent in their sampling trajectories. Although training-based fine-tuning (e.g. DDPO [1]) and inference-time alignment techniques[2] aim to improve sample fidelity, they typically necessitate full denoising processes and external reward signals. This incurs substantial computational costs, hindering their broader applicability. In this work, we unveil an intriguing phenomenon: a previously unobserved yet exploitable link between sample quality and characteristics of the denoising trajectory during classifier-free guidance (CFG). Specifically, we identify a strong correlation between high-density regions of the sample distribution and the Accumulated Score Differences (ASD)--the cumulative divergence between conditional and unconditional scores. Leveraging this insight, we introduce CFG-Rejection, an efficient, plug-and-play strategy that filters low-quality samples at an early stage of the denoising process, crucially without requiring external reward signals or model retraining. Importantly, our approach necessitates no modifications to model architectures or sampling schedules and maintains full compatibility with existing diffusion frameworks. We validate the effectiveness of CFG-Rejection in image generation through extensive experiments, demonstrating marked improvements on human preference scores (HPSv2, PickScore) and challenging benchmarks (GenEval, DPG-Bench). We anticipate that CFG-Rejection will offer significant advantages for diverse generative modalities beyond images, paving the way for more efficient and reliable high-quality sample generation.
Related papers
- Conditional Diffusion Models with Classifier-Free Gibbs-like Guidance [19.83064246586143]
CFG is a technique for improving conditional diffusion models by linearly combining the outputs of conditional and unconditional denoisers.<n>While CFG enhances visual quality and improves alignment with prompts, it often reduces sample diversity.<n>We propose a Gibbs-like sampling procedure to draw samples from the desired tilted distribution.
arXiv Detail & Related papers (2025-05-27T12:27:33Z) - Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation [82.39763984380625]
We introduce denoising score distillation (DSD), a surprisingly effective and novel approach for training high-quality generative models from low-quality data.<n>DSD pretrains a diffusion model exclusively on noisy, corrupted samples and then distills it into a one-step generator capable of producing refined, clean outputs.
arXiv Detail & Related papers (2025-03-10T17:44:46Z) - Contrastive CFG: Improving CFG in Diffusion Models by Contrasting Positive and Negative Concepts [55.298031232672734]
As-Free Guidance (CFG) has proven effective in conditional diffusion model sampling for improved condition alignment.
We present a novel method to enhance negative CFG guidance using contrastive loss.
arXiv Detail & Related papers (2024-11-26T03:29:27Z) - Your Diffusion Model is Secretly a Noise Classifier and Benefits from Contrastive Training [20.492630610281658]
Diffusion models learn to denoise data and the trained denoiser is then used to generate new samples from the data distribution.
We introduce a new self-supervised training objective that differentiates the levels of noise added to a sample.
We show by diverse experiments that the proposed contrastive diffusion training is effective for both sequential and parallel settings.
arXiv Detail & Related papers (2024-07-12T03:03:50Z) - Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance [28.354284737867136]
Perturbed-Attention Guidance (PAG) improves diffusion sample quality across both unconditional and conditional settings.
In both ADM and Stable Diffusion, PAG surprisingly improves sample quality in conditional and even unconditional scenarios.
arXiv Detail & Related papers (2024-03-26T04:49:11Z) - Bridging the Gap: Addressing Discrepancies in Diffusion Model Training
for Classifier-Free Guidance [1.6804613362826175]
Diffusion models have emerged as a pivotal advancement in generative models.
In this paper we aim to underscore a discrepancy between conventional training methods and the desired conditional sampling behavior.
We introduce an updated loss function that better aligns training objectives with sampling behaviors.
arXiv Detail & Related papers (2023-11-02T02:03:12Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques.
We propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process.
Our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance.
arXiv Detail & Related papers (2023-05-24T07:59:44Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.