On the Validity of Head Motion Patterns as Generalisable Depression Biomarkers
- URL: http://arxiv.org/abs/2505.23427v1
- Date: Thu, 29 May 2025 13:22:30 GMT
- Title: On the Validity of Head Motion Patterns as Generalisable Depression Biomarkers
- Authors: Monika Gahalawat, Maneesh Bilalpur, Raul Fernandez Rojas, Jeffrey F. Cohn, Roland Goecke, Ramanathan Subramanian,
- Abstract summary: This work examines the effectiveness and generalisability of models utilising elementary head motion units, termed kinemes, for depression severity estimation.<n>We consider three depression datasets from different western cultures to investigate the generalisability of the derived kineme patterns.<n>Our results show that: (1) head motion patterns are efficient biomarkers for estimating depression severity, achieving highly competitive performance for both classification and regression tasks.
- Score: 5.251042759836316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depression is a debilitating mood disorder negatively impacting millions worldwide. While researchers have explored multiple verbal and non-verbal behavioural cues for automated depression assessment, head motion has received little attention thus far. Further, the common practice of validating machine learning models via a single dataset can limit model generalisability. This work examines the effectiveness and generalisability of models utilising elementary head motion units, termed kinemes, for depression severity estimation. Specifically, we consider three depression datasets from different western cultures (German: AVEC2013, Australian: Blackdog and American: Pitt datasets) with varied contextual and recording settings to investigate the generalisability of the derived kineme patterns via two methods: (i) k-fold cross-validation over individual/multiple datasets, and (ii) model reuse on other datasets. Evaluating classification and regression performance with classical machine learning methods, our results show that: (1) head motion patterns are efficient biomarkers for estimating depression severity, achieving highly competitive performance for both classification and regression tasks on a variety of datasets, including achieving the second best Mean Absolute Error (MAE) on the AVEC2013 dataset, and (2) kineme-based features are more generalisable than (a) raw head motion descriptors for binary severity classification, and (b) other visual behavioural cues for severity estimation (regression).
Related papers
- Human Cognitive Benchmarks Reveal Foundational Visual Gaps in MLLMs [65.93003087656754]
VisFactor is a benchmark that digitizes 20 vision-centric subtests from a well-established cognitive psychology assessment.<n>We evaluate 20 frontier Multimodal Large Language Models (MLLMs) from GPT, Gemini, Claude, LLaMA, Qwen, and SEED families.<n>The best-performing model achieves a score of only 25.19 out of 100, with consistent failures on tasks such as mental rotation, spatial relation inference, and figure-ground discrimination.
arXiv Detail & Related papers (2025-02-23T04:21:32Z) - Are Anomaly Scores Telling the Whole Story? A Benchmark for Multilevel Anomaly Detection [46.244213695024]
Anomaly detection (AD) is a machine learning task that identifies anomalies by learning patterns from normal training data.
Existing models primarily operate in a binary setting, and the anomaly scores they produce are usually based on the deviation of data points from normal data.
We propose a novel setting, Multilevel AD (MAD), in which the anomaly score represents the severity of anomalies in real-world applications.
Second, we introduce a novel benchmark, MAD-Bench, that evaluates models not only on their ability to detect anomalies, but also on how effectively their anomaly scores reflect severity.
arXiv Detail & Related papers (2024-11-21T14:18:37Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - Explainable Depression Detection via Head Motion Patterns [13.950923529777803]
This study demonstrates the utility of fundamental head-motion units, termed emphkinemes, for depression detection by adopting two distinct approaches.
We evaluate depression classification performance on the emphBlackDog and emphAVEC2013 datasets.
arXiv Detail & Related papers (2023-07-23T06:39:51Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
We apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.
arXiv Detail & Related papers (2022-11-09T14:48:13Z) - Deep Temporal Modelling of Clinical Depression through Social Media Text [1.513693945164213]
We develop a model to detect user-level clinical depression based on a user's temporal social media posts.
Our model uses a Depression Detection (DSD) classifier, which is trained on the largest existing samples of clinician annotated tweets for clinical depression symptoms.
arXiv Detail & Related papers (2022-10-28T18:31:52Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
This paper explores the use of non-linear interpretable machine learning (ML) models in classification problems.
Various ensembles of trees are compared to linear models using imbalanced synthetic and real-world datasets.
In one of the two real-world datasets, knowledge distillation method achieves improved AUC scores.
arXiv Detail & Related papers (2022-04-04T17:56:37Z) - Robust Hierarchical Patterns for identifying MDD patients: A Multisite
Study [3.4561220135252264]
We look at hierarchical Sparse Connectivity Patterns (h SCPs) as biomarkers for major depressive disorder (MDD)
We propose a novel model based on h SCPs to predict MDD patients from functional connectivity matrices extracted from resting-state fMRI data.
Our results show the impact of diversity on prediction performance. Our model can reduce diversity and improve the predictive and generalizing capability of the components.
arXiv Detail & Related papers (2022-02-22T19:40:32Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.