What About Emotions? Guiding Fine-Grained Emotion Extraction from Mobile App Reviews
- URL: http://arxiv.org/abs/2505.23452v2
- Date: Tue, 01 Jul 2025 15:43:42 GMT
- Title: What About Emotions? Guiding Fine-Grained Emotion Extraction from Mobile App Reviews
- Authors: Quim Motger, Marc Oriol, Max Tiessler, Xavier Franch, Jordi Marco,
- Abstract summary: Fine-grained emotion classification in app reviews remains underexplored.<n>Our study adapts Plutchik's emotion taxonomy to app reviews by developing a structured annotation framework and dataset.<n>We evaluate the feasibility of automating emotion annotation using large language models.
- Score: 3.24647377768909
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Opinion mining plays a vital role in analysing user feedback and extracting insights from textual data. While most research focuses on sentiment polarity (e.g., positive, negative, neutral), fine-grained emotion classification in app reviews remains underexplored. Fine-grained emotion classification is thus needed to better understand users' affective responses and support downstream tasks such as feature-emotion analysis, user-oriented release planning, and issue triaging. This paper addresses this gap by identifying and addressing the challenges and limitations in fine-grained emotion analysis in the context of app reviews. Our study adapts Plutchik's emotion taxonomy to app reviews by developing a structured annotation framework and dataset. Through an iterative human annotation process, we define clear annotation guidelines and document key challenges in emotion classification. Additionally, we evaluate the feasibility of automating emotion annotation using large language models, assessing their cost-effectiveness and agreement with human-labelled data. Our findings reveal that while large language models significantly reduce manual effort and maintain substantial agreement with human annotators, full automation remains challenging due to the complexity of emotional interpretation. This work contributes to opinion mining in requirements engineering by providing structured guidelines, an annotated dataset, and insights for developing automated pipelines to capture the complexity of emotions in app reviews.
Related papers
- My Words Imply Your Opinion: Reader Agent-based Propagation Enhancement for Personalized Implicit Emotion Analysis [11.628440499885238]
We introduce Personalized IEA (PIEA) and present the RAPPIE model, which addresses subjective variability by incorporating reader feedback.<n>We create reader agents based on large language models to simulate reader feedback.<n>We construct two new PIEA datasets covering English and Chinese social media with detailed user metadata.
arXiv Detail & Related papers (2024-12-10T10:06:46Z) - Towards Empathetic Conversational Recommender Systems [77.53167131692]
We propose an empathetic conversational recommender (ECR) framework.
ECR contains two main modules: emotion-aware item recommendation and emotion-aligned response generation.
Our experiments on the ReDial dataset validate the efficacy of our framework in enhancing recommendation accuracy and improving user satisfaction.
arXiv Detail & Related papers (2024-08-30T15:43:07Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Context Unlocks Emotions: Text-based Emotion Classification Dataset
Auditing with Large Language Models [23.670143829183104]
The lack of contextual information in text data can make the annotation process of text-based emotion classification datasets challenging.
We propose a formal definition of textual context to motivate a prompting strategy to enhance such contextual information.
Our method improves alignment between inputs and their human-annotated labels from both an empirical and human-evaluated standpoint.
arXiv Detail & Related papers (2023-11-06T21:34:49Z) - EmoTwiCS: A Corpus for Modelling Emotion Trajectories in Dutch Customer
Service Dialogues on Twitter [9.2878798098526]
This paper introduces EmoTwiCS, a corpus of 9,489 Dutch customer service dialogues on Twitter that are annotated for emotion trajectories.
The term emotion trajectory' refers not only to the fine-grained emotions experienced by customers, but also to the event happening prior to the conversation and the responses made by the human operator.
arXiv Detail & Related papers (2023-10-10T11:31:11Z) - Implicit Design Choices and Their Impact on Emotion Recognition Model
Development and Evaluation [5.534160116442057]
The subjectivity of emotions poses significant challenges in developing accurate and robust computational models.
This thesis examines critical facets of emotion recognition, beginning with the collection of diverse datasets.
To handle the challenge of non-representative training data, this work collects the Multimodal Stressed Emotion dataset.
arXiv Detail & Related papers (2023-09-06T02:45:42Z) - Unsupervised Extractive Summarization of Emotion Triggers [56.50078267340738]
We develop new unsupervised learning models that can jointly detect emotions and summarize their triggers.
Our best approach, entitled Emotion-Aware Pagerank, incorporates emotion information from external sources combined with a language understanding module.
arXiv Detail & Related papers (2023-06-02T11:07:13Z) - Natural Language Processing for Cognitive Analysis of Emotions [0.0]
We introduce a new annotation scheme for exploring emotions and their causes, along with a new French dataset composed of autobiographical accounts of an emotional scene.
The texts were collected by applying the Cognitive Analysis of Emotions developed by A. Finkel to help people improve on their emotion management.
arXiv Detail & Related papers (2022-10-11T09:47:00Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
arXiv Detail & Related papers (2020-11-15T01:55:37Z) - A Unified Dual-view Model for Review Summarization and Sentiment
Classification with Inconsistency Loss [51.448615489097236]
Acquiring accurate summarization and sentiment from user reviews is an essential component of modern e-commerce platforms.
We propose a novel dual-view model that jointly improves the performance of these two tasks.
Experiment results on four real-world datasets from different domains demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2020-06-02T13:34:11Z) - PO-EMO: Conceptualization, Annotation, and Modeling of Aesthetic
Emotions in German and English Poetry [26.172030802168752]
We consider emotions in poetry as they are elicited in the reader, rather than what is expressed in the text or intended by the author.
We conceptualize a set of aesthetic emotions that are predictive of aesthetic appreciation in the reader, and allow the annotation of multiple labels per line to capture mixed emotions within their context.
arXiv Detail & Related papers (2020-03-17T13:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.