Space magnetometry with a differential atom interferometer
- URL: http://arxiv.org/abs/2505.23532v1
- Date: Thu, 29 May 2025 15:11:31 GMT
- Title: Space magnetometry with a differential atom interferometer
- Authors: Matthias Meister, Gabriel Müller, Patrick Boegel, Albert Roura, Annie Pichery, David B. Reinhardt, Timothé Estrampes, Jannik Ströhle, Enno Giese, Holger Ahlers, Waldemar Herr, Christian Schubert, Éric Charron, Holger Müller, Jason R. Williams, Ernst M. Rasel, Wolfgang P. Schleich, Naceur Gaaloul, Nicholas P. Bigelow,
- Abstract summary: We report on orbital magnetometry campaigns performed with differential single- and double-loop interferometers in NASA's Cold Atom Lab aboard the International Space Station.<n>By comparing measurements with atoms in magnetically sensitive and insensitive states, we have realized atomic magnetometers mapping magnetic field curvatures.
- Score: 0.24213912667666485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Atom interferometers deployed in space are excellent tools for high precision measurements, navigation, or Earth observation. In particular, differential interferometric setups feature common-mode noise suppression and enable reliable measurements in the presence of ambient platform noise. Here we report on orbital magnetometry campaigns performed with differential single- and double-loop interferometers in NASA's Cold Atom Lab aboard the International Space Station. By comparing measurements with atoms in magnetically sensitive and insensitive states, we have realized atomic magnetometers mapping magnetic field curvatures. Our results pave the way towards precision quantum sensing missions in space.
Related papers
- Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.<n>We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.<n>We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - Local Measurement Scheme of Gravitational Curvature using Atom Interferometers [0.4124271833765226]
We present a method in which the differential signal of two co-located interferometers singles out a phase shift proportional to the curvature of the gravitational potential.
We numerically simulate such a co-located gradiometric interferometer in the context of the Hannover VLBAI facility.
arXiv Detail & Related papers (2024-09-05T13:29:45Z) - Realizing a spatially correlated lattice interferometer [8.81055904289318]
Atom interferometers provide a powerful tool for measuring physical constants and testifying fundamental physics with unprecedented precision.
Here, we report on realizing a Ramsey-Bord'e interferometer of coherent matter waves dressed by a moving optical lattice in the gravity direction.
Our findings agree well with theoretical simulations, paving the way for high-precision interferometry with ultracold atoms.
arXiv Detail & Related papers (2024-06-24T17:54:03Z) - Long-range interactions in Weyl dense atomic arrays protected from dissipation and disorder [41.94295877935867]
Long-range interactions are a key resource in many quantum phenomena and technologies.
We show how to design the polaritonic bands of these atomic metamaterials to feature a pair of frequency-isolated Weyl points.
These Weyl excitations can thus mediate interactions that are simultaneously long-range, due to their gapless nature; robust, due to the topological protection of Weyl points; and decoherence-free, due to their subradiant character.
arXiv Detail & Related papers (2024-06-18T20:15:16Z) - Non-resonant electric quantum control of individual on-surface spins [41.94295877935867]
Quantum control techniques play an important role in manipulating and harnessing the properties of different quantum systems.<n>We propose to achieve quantum control over a single on-surface atomic spin using Landau-Zener-St"uckelberg-Majorana (LZSM) interferometry.
arXiv Detail & Related papers (2024-04-29T18:23:30Z) - Interferometry of Atomic Matter Waves in the Cold Atom Lab onboard the
International Space Station [0.2551676739403148]
NASA's Cold Atom Lab operates onboard the International Space Station as a multi-user facility for studies of ultracold atoms.
Atom interferometers are a class of quantum sensors which can use freely falling gases of atoms cooled to sub-photon-recoil temperatures.
A three-pulse Mach-Zehnder interferometer was studied to understand limitations from the influence of ISS vibrations.
Ramsey shear-wave interferometry was used to manifest interference patterns in a single run that were observable for over 150 ms free-expansion time.
arXiv Detail & Related papers (2024-02-22T16:41:00Z) - Atomic interferometer based on optical tweezers [0.0]
We propose and analyze a novel atomic interferometer that uses micro-optical traps (optical tweezers) to manipulate and control the motion of atoms.
The new interferometer allows long probing time, sub micrometer positioning accuracy, and utmost flexibility in shaping of the atomic trajectory.
We discuss two applications well-suited for the unique capabilities of the tweezer interferometer: the measurement of gravitational forces and the study of Casimir-Polder forces between atoms and surfaces.
arXiv Detail & Related papers (2023-08-15T13:42:57Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Ultracold atom interferometry in space [0.0]
Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne matter-wave interferometry.
Our work establishes matter-wave interferometry in space with future applications in fundamental physics, navigation and Earth observation.
arXiv Detail & Related papers (2021-01-04T13:50:38Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.