Ultracold atom interferometry in space
- URL: http://arxiv.org/abs/2101.00972v2
- Date: Tue, 5 Jan 2021 08:45:17 GMT
- Title: Ultracold atom interferometry in space
- Authors: Maike D. Lachmann, Holger Ahlers, Dennis Becker, Aline N. Dinkelaker,
Jens Grosse, Ortwin Hellmig, Hauke M\"untinga, Vladimir Schkolnik, Stephan T.
Seidel, Thijs Wendrich, Andr\'e Wenzlawski, Benjamin Weps, Naceur Gaaloul,
Daniel L\"udtke, Claus Braxmaier, Wolfgang Ertmer, Markus Krutzik, Claus
L\"ammerzahl, Achim Peters, Wolfgang P. Schleich, Klaus Sengstock, Andreas
Wicht, Patrick Windpassinger, Ernst M. Rasel
- Abstract summary: Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne matter-wave interferometry.
Our work establishes matter-wave interferometry in space with future applications in fundamental physics, navigation and Earth observation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bose-Einstein condensates (BECs) in free fall constitute a promising source
for space-borne matter-wave interferometry. Indeed, BECs enjoy a slowly
expanding wave function, display a large spatial coherence and can be
engineered and probed by optical techniques. On a sounding rocket, we explore
matter-wave fringes of multiple spinor components of a BEC released in free
fall employing light-pulses to drive Bragg processes and induce phase
imprinting. The prevailing microgravity played a crucial role in the
observation of these interferences which not only reveal the spatial coherence
of the condensates but also allow us to measure differential forces. Our work
establishes matter-wave interferometry in space with future applications in
fundamental physics, navigation and Earth observation.
Related papers
- Realizing a spatially correlated lattice interferometer [8.81055904289318]
Atom interferometers provide a powerful tool for measuring physical constants and testifying fundamental physics with unprecedented precision.
Here, we report on realizing a Ramsey-Bord'e interferometer of coherent matter waves dressed by a moving optical lattice in the gravity direction.
Our findings agree well with theoretical simulations, paving the way for high-precision interferometry with ultracold atoms.
arXiv Detail & Related papers (2024-06-24T17:54:03Z) - Long-range interactions in Weyl dense atomic arrays protected from dissipation and disorder [41.94295877935867]
Long-range interactions are a key resource in many quantum phenomena and technologies.
We show how to design the polaritonic bands of these atomic metamaterials to feature a pair of frequency-isolated Weyl points.
These Weyl excitations can thus mediate interactions that are simultaneously long-range, due to their gapless nature; robust, due to the topological protection of Weyl points; and decoherence-free, due to their subradiant character.
arXiv Detail & Related papers (2024-06-18T20:15:16Z) - Phonon-induced contrast in a matter-wave interferometer [0.7874708385247352]
We study the issue of internal degrees of freedom, specifically phonon fluctuations and contrast reduction.
This work will investigate the contrast reduction caused by spin-magnetic field and diamagnetic interactions at the phonon occupation level.
arXiv Detail & Related papers (2024-04-05T16:42:11Z) - Interferometry of Atomic Matter Waves in the Cold Atom Lab onboard the
International Space Station [0.2551676739403148]
NASA's Cold Atom Lab operates onboard the International Space Station as a multi-user facility for studies of ultracold atoms.
Atom interferometers are a class of quantum sensors which can use freely falling gases of atoms cooled to sub-photon-recoil temperatures.
A three-pulse Mach-Zehnder interferometer was studied to understand limitations from the influence of ISS vibrations.
Ramsey shear-wave interferometry was used to manifest interference patterns in a single run that were observable for over 150 ms free-expansion time.
arXiv Detail & Related papers (2024-02-22T16:41:00Z) - A high-flux source system for matter-wave interferometry exploiting
tunable interactions [33.92525320044496]
Atom interferometers allow determining inertial effects to high accuracy.
Here we report on a high-flux source of ultra-cold atoms with free expansion rates near the Heisenberg limit directly upon release from the trap.
arXiv Detail & Related papers (2023-07-13T14:10:53Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Perspective on Quantum Bubbles in Microgravity [40.448811194740536]
The NASA Cold Atom Laboratory (CAL) aboard the International Space Station has enabled the study of ultracold atomic bubbles.
Cal experiments have been performed on CAL with an.
rf-dressing technique; an alternate technique (dual-species interaction-driven bubbles) has also been proposed.
Both techniques can drive discovery in the next decade of fundamental physics research in microgravity.
arXiv Detail & Related papers (2022-11-09T10:55:49Z) - Robust Macroscopic Matter-Wave Interferometry with Solids [1.90365714903665]
We exploit the spatial correlations that are inherent in perturbations due to distant sources to reduce their impact on the visibility of interference patterns.
We develop a general framework that makes use of N+1 interferometers that may differ in their masses to correct for potential environmental fields up to order N.
We also show that the same ideas can be extended to the protection of entanglement between pairs of interferometers.
arXiv Detail & Related papers (2021-07-30T17:52:48Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Orbital angular momentum interference of trapped matter waves [0.0]
We introduce a matter wave interference scheme based on the quantization of orbital angular momentum in a ring trap.
We argue that orbital angular momentum interferometry offers a versatile platform for quantum coherent experiments with cold atoms and Bose-Einstein condensates.
arXiv Detail & Related papers (2020-06-08T11:44:01Z) - Multidimensional synthetic chiral-tube lattices via nonlinear frequency
conversion [57.860179997051915]
We propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions.
We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs.
arXiv Detail & Related papers (2020-02-20T07:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.