論文の概要: Synchronizing Process Model and Event Abstraction for Grounded Process Intelligence (Extended Version)
- arxiv url: http://arxiv.org/abs/2505.23536v1
- Date: Thu, 29 May 2025 15:15:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.931376
- Title: Synchronizing Process Model and Event Abstraction for Grounded Process Intelligence (Extended Version)
- Title(参考訳): 接地プロセスインテリジェンスのための同期プロセスモデルとイベント抽象化(拡張バージョン)
- Authors: Janik-Vasily Benzin, Gyunam Park, Stefanie Rinderle-Ma,
- Abstract要約: モデル抽象化(MA)とイベント抽象化(EA)は、(発見された)モデルとイベントデータの複雑さを軽減する手段です。
同期モデルとイベント抽象化の正式な基盤を提供する。
我々は,非順序保存MA手法として,行動プロファイルの抽象化に基づくアプローチの実現可能性を証明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model abstraction (MA) and event abstraction (EA) are means to reduce complexity of (discovered) models and event data. Imagine a process intelligence project that aims to analyze a model discovered from event data which is further abstracted, possibly multiple times, to reach optimality goals, e.g., reducing model size. So far, after discovering the model, there is no technique that enables the synchronized abstraction of the underlying event log. This results in loosing the grounding in the real-world behavior contained in the log and, in turn, restricts analysis insights. Hence, in this work, we provide the formal basis for synchronized model and event abstraction, i.e., we prove that abstracting a process model by MA and discovering a process model from an abstracted event log yields an equivalent process model. We prove the feasibility of our approach based on behavioral profile abstraction as non-order preserving MA technique, resulting in a novel EA technique.
- Abstract(参考訳): モデル抽象化(MA)とイベント抽象化(EA)は、(発見された)モデルとイベントデータの複雑さを軽減する手段です。
イベントデータから発見されたモデルを分析することを目的としたプロセスインテリジェンスプロジェクトを想像してください。
これまでのところ、モデルを発見した後、基盤となるイベントログの同期抽象化を可能にする技術はありません。
この結果、ログに含まれる現実世界の振る舞いの土台を略奪し、分析の洞察を制限することになる。
したがって、本研究では、同期モデルとイベント抽象化の正式な基礎、すなわち、MAによるプロセスモデルを抽象化し、抽象化されたイベントログからプロセスモデルを発見すれば、等価なプロセスモデルが得られることを証明します。
我々は,非順序保存MA技術として行動プロファイルの抽象化に基づくアプローチの有効性を実証し,新しいEA手法を提案する。
関連論文リスト
- Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - INEXA: Interactive and Explainable Process Model Abstraction Through Object-Centric Process Mining [0.0]
イベントログへのリンクを保持するインタラクティブで説明可能なプロセスモデル抽象化手法であるINEXAを提案する。
出発点として、INEXAは大規模なプロセスモデルを「表示可能な」サイズに集約する。
論文 参考訳(メタデータ) (2024-03-27T15:03:33Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Process Discovery Using Graph Neural Networks [2.6381163133447836]
本稿では,グラフニューラルネットワークを用いたMLベースモデルDのトレーニング手法を提案する。
Dは与えられた入力イベントログをサウンドペトリネットに変換する。
合成された入力ログと出力モデルのペアによるDのトレーニングにより、Dは以前に見つからなかった合成イベントログと複数の実生活イベントログを音に変換することができることを示す。
論文 参考訳(メタデータ) (2021-09-13T10:04:34Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Learning Accurate Business Process Simulation Models from Event Logs via
Automated Process Discovery and Deep Learning [0.8164433158925593]
データ駆動シミュレーション(DDS)メソッドは、イベントログからプロセスシミュレーションモデルを学ぶ。
ディープラーニング(DL)モデルは、このような時間的ダイナミクスを正確に捉えることができる。
本稿では,イベントログからプロセスシミュレーションモデルを学ぶためのハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2021-03-22T15:34:57Z) - Model-Invariant State Abstractions for Model-Based Reinforcement
Learning [54.616645151708994]
textitmodel-invarianceという新しいタイプの状態抽象化を紹介します。
これにより、状態変数の見当たらない値の新しい組み合わせへの一般化が可能になる。
このモデル不変状態抽象化を通じて最適なポリシーを学習できることを実証する。
論文 参考訳(メタデータ) (2021-02-19T10:37:54Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Data from Model: Extracting Data from Non-robust and Robust Models [83.60161052867534]
この研究は、データとモデルの関係を明らかにするために、モデルからデータを生成する逆プロセスについて検討する。
本稿では,データ・トゥ・モデル(DtM)とデータ・トゥ・モデル(DfM)を連続的に処理し,特徴マッピング情報の喪失について検討する。
以上の結果から,DtMとDfMの複数シーケンスの後にも,特にロバストモデルにおいて精度低下が制限されることが示唆された。
論文 参考訳(メタデータ) (2020-07-13T05:27:48Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。