MAPLE: A Mobile Agent with Persistent Finite State Machines for Structured Task Reasoning
- URL: http://arxiv.org/abs/2505.23596v2
- Date: Mon, 02 Jun 2025 18:32:13 GMT
- Title: MAPLE: A Mobile Agent with Persistent Finite State Machines for Structured Task Reasoning
- Authors: Linqiang Guo, Wei Liu, Yi Wen Heng, Tse-Hsun, Chen, Yang Wang,
- Abstract summary: We present MAPLE, a state-aware multi-agent framework that abstracts app interactions as a Finite State Machine (FSM)<n>We computationally model each UI screen as a discrete state and user actions as transitions, allowing the FSM to provide a structured representation of the app execution.<n> MAPLE consists of specialized agents responsible for four phases of task execution: planning, execution, verification, error recovery, and knowledge retention.
- Score: 46.18718721121415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile GUI agents aim to autonomously complete user-instructed tasks across mobile apps. Recent advances in Multimodal Large Language Models (MLLMs) enable these agents to interpret UI screens, identify actionable elements, and perform interactions such as tapping or typing. However, existing agents remain reactive: they reason only over the current screen and lack a structured model of app navigation flow, limiting their ability to understand context, detect unexpected outcomes, and recover from errors. We present MAPLE, a state-aware multi-agent framework that abstracts app interactions as a Finite State Machine (FSM). We computationally model each UI screen as a discrete state and user actions as transitions, allowing the FSM to provide a structured representation of the app execution. MAPLE consists of specialized agents responsible for four phases of task execution: planning, execution, verification, error recovery, and knowledge retention. These agents collaborate to dynamically construct FSMs in real time based on perception data extracted from the UI screen, allowing the GUI agents to track navigation progress and flow, validate action outcomes through pre- and post-conditions of the states, and recover from errors by rolling back to previously stable states. Our evaluation results on two challenging cross-app benchmarks, Mobile-Eval-E and SPA-Bench, show that MAPLE outperforms the state-of-the-art baseline, improving task success rate by up to 12%, recovery success by 13.8%, and action accuracy by 6.5%. Our results highlight the importance of structured state modeling in guiding mobile GUI agents during task execution. Moreover, our FSM representation can be integrated into future GUI agent architectures as a lightweight, model-agnostic memory layer to support structured planning, execution verification, and error recovery.
Related papers
- MapAgent: Trajectory-Constructed Memory-Augmented Planning for Mobile Task Automation [5.433829353194621]
MapAgent is a framework that leverages memory constructed from historical trajectories to augment current task planning.<n>We introduce a coarse-to-fine task planning approach that retrieves relevant pages from the memory database based on similarity.<n>Results in real-world scenarios demonstrate that MapAgent achieves superior performance to existing methods.
arXiv Detail & Related papers (2025-07-29T16:05:32Z) - Less is More: Empowering GUI Agent with Context-Aware Simplification [62.02157661751793]
We propose a context-aware framework for building an efficient and effective GUI Agent, termed SimpAgent.<n>With the above components, SimpAgent reduces 27% FLOPs and achieves superior GUI navigation performances.
arXiv Detail & Related papers (2025-07-04T17:37:15Z) - AgentCPM-GUI: Building Mobile-Use Agents with Reinforcement Fine-Tuning [82.42421823672954]
AgentCPM-GUI is built for robust and efficient on-device GUI interaction.<n>Our training pipeline includes grounding-aware pre-training to enhance perception.<n>AgentCPM-GUI achieves state-of-the-art performance on five public benchmarks.
arXiv Detail & Related papers (2025-06-02T07:30:29Z) - Task Memory Engine: Spatial Memory for Robust Multi-Step LLM Agents [0.0]
Large Language Models (LLMs) falter in multi-step interactions due to reliance on linear, unstructured context.<n>We introduce the Task Memory Engine (TME), a modular memory controller that transforms existing LLMs into robust, revision-aware agents.<n>TME implements a spatial memory framework that replaces flat context with graph-based structures to support consistent, multi-turn reasoning.
arXiv Detail & Related papers (2025-05-26T02:53:22Z) - PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC [98.82146219495792]
In this paper, we propose a hierarchical agent framework named PC-Agent.<n>From the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content.<n>From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture.
arXiv Detail & Related papers (2025-02-20T05:41:55Z) - UI-TARS: Pioneering Automated GUI Interaction with Native Agents [58.18100825673032]
This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions.<n>In the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively)
arXiv Detail & Related papers (2025-01-21T17:48:10Z) - Mobile-Agent-E: Self-Evolving Mobile Assistant for Complex Tasks [85.48034185086169]
Mobile-Agent-E is a hierarchical multi-agent framework capable of self-evolution through past experience.<n>Mobile-Agent-E achieves a 22% absolute improvement over previous state-of-the-art approaches.
arXiv Detail & Related papers (2025-01-20T20:35:46Z) - AppAgent v2: Advanced Agent for Flexible Mobile Interactions [46.789563920416626]
This work introduces a novel LLM-based multimodal agent framework for mobile devices.
Our agent constructs a flexible action space that enhances adaptability across various applications.
Our results demonstrate the framework's superior performance, confirming its effectiveness in real-world scenarios.
arXiv Detail & Related papers (2024-08-05T06:31:39Z) - Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration [52.25473993987409]
We propose Mobile-Agent-v2, a multi-agent architecture for mobile device operation assistance.
The architecture comprises three agents: planning agent, decision agent, and reflection agent.
We show that Mobile-Agent-v2 achieves over a 30% improvement in task completion compared to the single-agent architecture.
arXiv Detail & Related papers (2024-06-03T05:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.