Task Memory Engine: Spatial Memory for Robust Multi-Step LLM Agents
- URL: http://arxiv.org/abs/2505.19436v1
- Date: Mon, 26 May 2025 02:53:22 GMT
- Title: Task Memory Engine: Spatial Memory for Robust Multi-Step LLM Agents
- Authors: Ye Ye,
- Abstract summary: Large Language Models (LLMs) falter in multi-step interactions due to reliance on linear, unstructured context.<n>We introduce the Task Memory Engine (TME), a modular memory controller that transforms existing LLMs into robust, revision-aware agents.<n>TME implements a spatial memory framework that replaces flat context with graph-based structures to support consistent, multi-turn reasoning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) falter in multi-step interactions -- often hallucinating, repeating actions, or misinterpreting user corrections -- due to reliance on linear, unstructured context. This fragility stems from the lack of persistent memory to track evolving goals and task dependencies, undermining trust in autonomous agents. We introduce the Task Memory Engine (TME), a modular memory controller that transforms existing LLMs into robust, revision-aware agents without fine-tuning. TME implements a spatial memory framework that replaces flat context with graph-based structures to support consistent, multi-turn reasoning. Departing from linear concatenation and ReAct-style prompting, TME builds a dynamic task graph -- either a tree or directed acyclic graph (DAG) -- to map user inputs to subtasks, align them with prior context, and enable dependency-tracked revisions. Its Task Representation and Intent Management (TRIM) component models task semantics and user intent to ensure accurate interpretation. Across four multi-turn scenarios-trip planning, cooking, meeting scheduling, and shopping cart editing -- TME eliminates 100% of hallucinations and misinterpretations in three tasks, and reduces hallucinations by 66.7% and misinterpretations by 83.3% across 27 user turns, outperforming ReAct. TME's modular design supports plug-and-play deployment and domain-specific customization, adaptable to both personal assistants and enterprise automation. We release TME's codebase, benchmarks, and components as open-source resources, enabling researchers to develop reliable LLM agents. TME's scalable architecture addresses a critical gap in agent performance across complex, interactive settings.
Related papers
- RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory [57.449129198822476]
RCR is a role-aware context routing framework for multi-agent large language model (LLM) systems.<n>It dynamically selects semantically relevant memory subsets for each agent based on its role and task stage.<n>A lightweight scoring policy guides memory selection, and agent outputs are integrated into a shared memory store.
arXiv Detail & Related papers (2025-08-06T21:59:34Z) - Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
We propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling.<n>It comprises four distinct small-scale agents, with clearly defined roles and effective collaboration.<n>It shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks.
arXiv Detail & Related papers (2025-08-05T12:52:09Z) - CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs [16.234259194402163]
We introduce CodeAgents, a prompting framework that codifies multi-agent reasoning and enables structured, token-efficient planning in multi-agent systems.<n>Results show consistent improvements in planning performance, with absolute gains of 3-36 percentage points over natural language prompting baselines.
arXiv Detail & Related papers (2025-07-04T02:20:19Z) - MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents [84.62985963113245]
We introduce MEM1, an end-to-end reinforcement learning framework that enables agents to operate with constant memory across long multi-turn tasks.<n>At each turn, MEM1 updates a compact shared internal state that jointly supports memory consolidation and reasoning.<n>We show that MEM1-7B improves performance by 3.5x while reducing memory usage by 3.7x compared to Qwen2.5-14B-Instruct on a 16-objective multi-hop QA task.
arXiv Detail & Related papers (2025-06-18T19:44:46Z) - MAPLE: A Mobile Agent with Persistent Finite State Machines for Structured Task Reasoning [46.18718721121415]
We present MAPLE, a state-aware multi-agent framework that abstracts app interactions as a Finite State Machine (FSM)<n>We computationally model each UI screen as a discrete state and user actions as transitions, allowing the FSM to provide a structured representation of the app execution.<n> MAPLE consists of specialized agents responsible for four phases of task execution: planning, execution, verification, error recovery, and knowledge retention.
arXiv Detail & Related papers (2025-05-29T16:08:51Z) - MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision [76.42361936804313]
We introduce MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS design.<n> MAS-ZERO employs meta-level design to iteratively generate, evaluate, and refine MAS configurations tailored to each problem instance.
arXiv Detail & Related papers (2025-05-21T00:56:09Z) - LLM-Empowered Embodied Agent for Memory-Augmented Task Planning in Household Robotics [7.274730603514222]
We present an embodied robotic system with an LLM-driven agent-orchestration architecture for autonomous household object management.<n>The system integrates memory-augmented task planning, enabling robots to execute high-level user commands while tracking past actions.
arXiv Detail & Related papers (2025-04-30T15:00:20Z) - Task Memory Engine (TME): A Structured Memory Framework with Graph-Aware Extensions for Multi-Step LLM Agent Tasks [0.0]
We propose a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT)<n>TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies.
arXiv Detail & Related papers (2025-04-11T13:38:36Z) - Marmot: Multi-Agent Reasoning for Multi-Object Self-Correcting in Improving Image-Text Alignment [55.74860093731475]
Marmot is a novel framework that employs Multi-Agent Reasoning for Multi-Object Self-Correcting.<n>We construct a multi-agent self-correcting system featuring a decision-execution-verification mechanism.<n>Experiments demonstrate that Marmot significantly improves accuracy in object counting, attribute assignment, and spatial relationships.
arXiv Detail & Related papers (2025-04-10T16:54:28Z) - QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding [53.69841526266547]
Fine-tuning a pre-trained Vision-Language Model with new datasets often falls short in optimizing the vision encoder.<n>We introduce QID, a novel, streamlined, architecture-preserving approach that integrates query embeddings into the vision encoder.
arXiv Detail & Related papers (2025-04-03T18:47:16Z) - AgentPS: Agentic Process Supervision for Multi-modal Content Quality Assurance through Multi-round QA [9.450927573476822]
textitAgentPS is a novel framework that integrates Agentic Process Supervision into MLLMs via multi-round question answering during fine-tuning.<n>textitAgentPS demonstrates significant performance improvements over baseline MLLMs on proprietary TikTok datasets.
arXiv Detail & Related papers (2024-12-15T04:58:00Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.<n>We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.