Instance-Optimality for Private KL Distribution Estimation
- URL: http://arxiv.org/abs/2505.23620v1
- Date: Thu, 29 May 2025 16:27:57 GMT
- Title: Instance-Optimality for Private KL Distribution Estimation
- Authors: Jiayuan Ye, Vitaly Feldman, Kunal Talwar,
- Abstract summary: We study the fundamental problem of estimating an unknown discrete distribution $p$ over $d$ symbols, given $n$ i.i.d. samples from the distribution.<n>We propose algorithms that achieve instance-optimality up to constant factors, with and without a differential privacy constraint.
- Score: 41.35506763248454
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study the fundamental problem of estimating an unknown discrete distribution $p$ over $d$ symbols, given $n$ i.i.d. samples from the distribution. We are interested in minimizing the KL divergence between the true distribution and the algorithm's estimate. We first construct minimax optimal private estimators. Minimax optimality however fails to shed light on an algorithm's performance on individual (non-worst-case) instances $p$ and simple minimax-optimal DP estimators can have poor empirical performance on real distributions. We then study this problem from an instance-optimality viewpoint, where the algorithm's error on $p$ is compared to the minimum achievable estimation error over a small local neighborhood of $p$. Under natural notions of local neighborhood, we propose algorithms that achieve instance-optimality up to constant factors, with and without a differential privacy constraint. Our upper bounds rely on (private) variants of the Good-Turing estimator. Our lower bounds use additive local neighborhoods that more precisely captures the hardness of distribution estimation in KL divergence, compared to ones considered in prior works.
Related papers
- Adaptive $k$-nearest neighbor classifier based on the local estimation of the shape operator [49.87315310656657]
We introduce a new adaptive $k$-nearest neighbours ($kK$-NN) algorithm that explores the local curvature at a sample to adaptively defining the neighborhood size.
Results on many real-world datasets indicate that the new $kK$-NN algorithm yields superior balanced accuracy compared to the established $k$-NN method.
arXiv Detail & Related papers (2024-09-08T13:08:45Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Optimality in Mean Estimation: Beyond Worst-Case, Beyond Sub-Gaussian,
and Beyond $1+\alpha$ Moments [10.889739958035536]
We introduce a new definitional framework to analyze the fine-grained optimality of algorithms.
We show that median-of-means is neighborhood optimal, up to constant factors.
It is open to find a neighborhood-separated estimator without constant factor slackness.
arXiv Detail & Related papers (2023-11-21T18:50:38Z) - Simple Binary Hypothesis Testing under Local Differential Privacy and
Communication Constraints [8.261182037130407]
We study simple binary hypothesis testing under both local differential privacy (LDP) and communication constraints.
We qualify our results as either minimax optimal or instance optimal.
arXiv Detail & Related papers (2023-01-09T18:36:49Z) - Privately Estimating a Gaussian: Efficient, Robust and Optimal [6.901744415870126]
We give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models.
In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error.
For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $widetilde O(d)$, improving on a $widetilde O(d1.5)$ bound from prior work.
arXiv Detail & Related papers (2022-12-15T18:27:39Z) - Instance-Optimal Differentially Private Estimation [2.320417845168326]
We study local minimax convergence estimation rates subject to $epsilon$-differential privacy.
We show that optimal algorithms for simple hypothesis testing, namely the recent optimal private testers of Canonne et al., directly inform the design of locally minimax estimation algorithms.
arXiv Detail & Related papers (2022-10-28T01:08:01Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Robust Learning of Optimal Auctions [84.13356290199603]
We study the problem of learning revenue-optimal multi-bidder auctions from samples when the samples of bidders' valuations can be adversarially corrupted or drawn from distributions that are adversarially perturbed.
We propose new algorithms that can learn a mechanism whose revenue is nearly optimal simultaneously for all true distributions'' that are $alpha$-close to the original distribution in Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2021-07-13T17:37:21Z) - Optimal Rates of (Locally) Differentially Private Heavy-tailed
Multi-Armed Bandits [11.419534203345187]
We study the problem of multi-armed bandits (MAB) in the (local) differential privacy (DP/LDP) model.
We propose an algorithm which could be seen as locally private and robust version of the Successive Elimination (SE) algorithm.
arXiv Detail & Related papers (2021-06-04T16:17:21Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Learning Minimax Estimators via Online Learning [55.92459567732491]
We consider the problem of designing minimax estimators for estimating parameters of a probability distribution.
We construct an algorithm for finding a mixed-case Nash equilibrium.
arXiv Detail & Related papers (2020-06-19T22:49:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.