Measuring topological invariants of even-dimensional non-Hermitian systems through quench dynamics
- URL: http://arxiv.org/abs/2505.23633v3
- Date: Wed, 04 Jun 2025 14:12:11 GMT
- Title: Measuring topological invariants of even-dimensional non-Hermitian systems through quench dynamics
- Authors: Xiao-Dong Lin, Long Zhang,
- Abstract summary: Non-Hermitian (NH) topological invariants play a central role in the study of NH topological phases.<n>We propose a general framework for directly measuring NH topological invariants in even-dimensional systems.<n>We show that NH topological invariants can be extracted from the winding patterns of a dynamical field constructed from post-quench spin textures.
- Score: 6.33906375869588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate determination of non-Hermitian (NH) topological invariants plays a central role in the study of NH topological phases. In this work, we propose a general framework for directly measuring NH topological invariants in even-dimensional systems through quench dynamics. Our approach hinges on constructing an auxiliary Hermitian matrix topologically equivalent to the original NH Hamiltonian, enabling topological characterization via reduced-dimensional momentum subspaces called band inversion surfaces (BISs). A key insight lies in the emergence of chiral symmetry in the NH Hamiltonian specifically on BISs -- a critical property that allows extension of the dynamical characterization scheme previously developed for odd-dimensional NH systems with chiral or sublattice symmetry [Lin et al., Phys. Rev. Res. 7, L012060 (2025)]. We show that NH topological invariants can be extracted from the winding patterns of a dynamical field constructed from post-quench spin textures on BISs. We demonstrate our approach through a detailed analysis of NH Chern insulators and then extend the framework to higher even-dimensional systems by introducing second-order BISs for characterization. This work establishes an experimentally accessible protocol for detecting NH topological invariants in quantum platforms.
Related papers
- From Chern to Winding: Topological Invariant Correspondence in the Reduced Haldane Model [0.4249842620609682]
We present an exact analytical investigation of the topological properties and edge states of the Haldane model defined on a honeycomb lattice with zigzag edges.<n>We show that the $nu$ exactly reproduces the Chern number of the parent model in the topologically nontrivial phase.<n>Our analysis further reveals the critical momentum $ k_c $ where edge states traverse the bulk energy gap.
arXiv Detail & Related papers (2025-05-26T19:11:43Z) - Lie symmetries and ghost-free representations of the Pais-Uhlenbeck model [44.99833362998488]
We investigate the Pais-Uhlenbeck (PU) model, a paradigmatic example of a higher time-derivative theory.<n>Exploiting Lie symmetries in conjunction with the model's Bi-Hamiltonian structure, we construct distinct Poisson bracket formulations.<n>Our approach yields a unified framework for interpreting and stabilising higher time-derivative dynamics.
arXiv Detail & Related papers (2025-05-09T15:16:40Z) - Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.<n>We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.<n>We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Observation of non-Hermitian bulk-boundary correspondence in non-chiral non-unitary quantum dynamics of single photons [31.05848822220465]
In non-Hermitian systems, preserved chiral symmetry is one of the key ingredients, which plays a pivotal role in determining non-Hermitian topology.<n>We theoretically predict and experimentally demonstrate the bulk-boundary correspondence of a one-dimensional (1D) non-Hermitian system with chiral symmetry breaking.
arXiv Detail & Related papers (2025-04-07T09:43:43Z) - Measuring Non-Hermitian Topological Invariants Directly from Quench Dynamics [6.33906375869588]
Non-Hermitian (NH) topological phases and phenomena have been observed across various quantum systems.<n>We present a generic and unified framework for the direct measurement of various NH topological invariants in odd-dimensional systems.<n>This work paves the way for the direct measurement of NH topological invariants in quantum systems.
arXiv Detail & Related papers (2024-10-17T05:48:45Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Dynamical topology of chiral and nonreciprocal state transfers in a non-Hermitian quantum system [11.467872077398688]
We study topological chiral and nonreciprocal dynamics by encircling the exceptional points (EPs) of non-Hermitian Hamiltonians in a trapped ion system.
These dynamics are topologically robust against external perturbations even in the presence dissipation-induced nonadiabatic processes.
Our results mark a significant step towards exploring topological properties of open quantum systems.
arXiv Detail & Related papers (2024-06-05T07:51:58Z) - Topological zero modes and edge symmetries of metastable Markovian
bosonic systems [0.0]
We study tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators.
We show the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system.
Our results point to a new paradigm of genuine symmetry-protected topological physics in free bosons.
arXiv Detail & Related papers (2023-06-23T18:00:03Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Pseudo-Hermitian Levin-Wen models from non-semisimple TQFTs [24.70079638524539]
We construct large classes of exactly solvable pseudo-Hermitian 2D spin Hamiltonians.
We identify the ground state system on a surface with the value assigned to the surface by a non-semisimple TQFT generalizing the Turaev-Viro model.
arXiv Detail & Related papers (2021-08-24T15:39:41Z) - Simulating Exceptional Non-Hermitian Metals with Single-Photon
Interferometry [4.030017427802459]
We experimentally simulate in a photonic setting non-Hermitian (NH) metals characterized by the topological properties of their nodal band structures.
We focus on two distinct types of NH metals: two-dimensional systems with symmetry-protected ELs, and three-dimensional systems possessing symmetry-independent topological ELs in the form of knots.
arXiv Detail & Related papers (2020-11-03T18:00:49Z) - Nonseparable Symplectic Neural Networks [23.77058934710737]
We propose a novel neural network architecture, Nonseparable Symplectic Neural Networks (NSSNNs)
NSSNNs uncover and embed the symplectic structure of a nonseparable Hamiltonian system from limited observation data.
We show the unique computational merits of our approach to yield long-term, accurate, and robust predictions for large-scale Hamiltonian systems.
arXiv Detail & Related papers (2020-10-23T19:50:13Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.