論文の概要: Comparing the Effects of Persistence Barcodes Aggregation and Feature Concatenation on Medical Imaging
- arxiv url: http://arxiv.org/abs/2505.23637v1
- Date: Thu, 29 May 2025 16:45:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:08.001583
- Title: Comparing the Effects of Persistence Barcodes Aggregation and Feature Concatenation on Medical Imaging
- Title(参考訳): 持続バーコード集合と特徴連結が医用画像に及ぼす影響の比較
- Authors: Dashti A. Ali, Richard K. G. Do, William R. Jarnagin, Aras T. Asaad, Amber L. Simpson,
- Abstract要約: 医用画像解析において、特徴工学は機械学習モデルの設計と性能において重要な役割を果たす。
持続的トポロジカルな特徴と幾何学的特徴を永続的バーコードとして保存する。
分類モデルの性能に対する2つのアプローチの効果を比較した。
- 参考スコア(独自算出の注目度): 0.9524546889479364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In medical image analysis, feature engineering plays an important role in the design and performance of machine learning models. Persistent homology (PH), from the field of topological data analysis (TDA), demonstrates robustness and stability to data perturbations and addresses the limitation from traditional feature extraction approaches where a small change in input results in a large change in feature representation. Using PH, we store persistent topological and geometrical features in the form of the persistence barcode whereby large bars represent global topological features and small bars encapsulate geometrical information of the data. When multiple barcodes are computed from 2D or 3D medical images, two approaches can be used to construct the final topological feature vector in each dimension: aggregating persistence barcodes followed by featurization or concatenating topological feature vectors derived from each barcode. In this study, we conduct a comprehensive analysis across diverse medical imaging datasets to compare the effects of the two aforementioned approaches on the performance of classification models. The results of this analysis indicate that feature concatenation preserves detailed topological information from individual barcodes, yields better classification performance and is therefore a preferred approach when conducting similar experiments.
- Abstract(参考訳): 医用画像解析において、特徴工学は機械学習モデルの設計と性能において重要な役割を果たす。
トポロジカルデータ解析(TDA)の分野からの永続的ホモロジー(PH)は、データ摂動に対する堅牢性と安定性を示し、入力のわずかな変化が特徴表現に大きな変化をもたらす伝統的な特徴抽出アプローチからの制限に対処する。
PHを用いて、持続的な位相的特徴と幾何学的特徴を永続バーコード形式で記憶し、大小小小のバーがデータの幾何学的情報をカプセル化する。
複数のバーコードを2次元または3次元の医療画像から計算すると、それぞれの次元で最後のトポロジ的特徴ベクトルを構築するために2つのアプローチが用いられる。
本研究では、上記2つのアプローチが分類モデルの性能に与える影響を比較するために、多様な医用画像データセットを網羅的に分析する。
この分析の結果,特徴連結は個々のバーコードからの詳細なトポロジ情報を保存し,より優れた分類性能をもたらすことが示唆された。
関連論文リスト
- Discrete transforms of quantized persistence diagrams [0.5249805590164902]
永続化ダイアグラムをベクトル化する新奇でシンプルな方法Qupidを紹介する。
主要な特徴は、永続化ダイアグラムの対角線付近に含まれる情報を強調するログスケールグリッドの選択である。
我々はQupidの詳細な実験分析を行い、本手法の単純さは計算コストを極端に低くすることを示した。
論文 参考訳(メタデータ) (2023-12-28T16:11:11Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation [35.34932609930401]
本研究は,バイオメディカルイメージセグメンテーションのための計算効率の良い生成ツールとしてのPULASki法を提案する。
専門家のアノテーションでは、小さなデータセットであっても、変数をキャプチャする。
また,3次元パッチと従来の2次元スライスを用いた複雑なジオメトリーの計算可能セグメンテーションについて比較検討した。
論文 参考訳(メタデータ) (2023-12-25T10:31:22Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
本研究では,3次元画像処理における中間特徴表現を用いた2次元ネットワークの適応手法を提案する。
我々は、ベンチマークとして3D MedMNISTデータセットと、既存の手法に匹敵する数百の高分解能CTまたはMRIスキャンからなる2つの実世界のデータセットを示す。
論文 参考訳(メタデータ) (2023-07-13T08:27:09Z) - Combining Variational Autoencoders and Physical Bias for Improved
Microscopy Data Analysis [0.0]
本稿では,データ内の変数の因子を分散させる物理拡張機械学習手法を提案する。
本手法はNiO-LSMO, BiFeO3, グラフェンなど様々な材料に適用される。
その結果,大量の画像データから有意な情報を抽出する手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-08T17:35:38Z) - The geometry of hidden representations of large transformer models [43.16765170255552]
大規模トランスは、さまざまなデータタイプをまたいだ自己教師型データ分析に使用される強力なアーキテクチャである。
データセットのセマンティック構造は、ある表現と次の表現の間の変換のシーケンスから現れることを示す。
本研究は,データセットのセマンティクス情報が第1ピークの終わりによりよく表現されることを示し,この現象を多種多様なデータセットで訓練された多くのモデルで観測できることを示した。
論文 参考訳(メタデータ) (2023-02-01T07:50:26Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Self-supervised Geometric Perception [96.89966337518854]
自己教師付き幾何知覚(self-supervised geometric perception)は、基底幾何モデルラベルなしで対応マッチングのための特徴記述子を学ぶためのフレームワークである。
また,SGPは,地上トラスラベルを用いて訓練した教師付きオークルよりも同等か優れる最先端性能を達成できることを示す。
論文 参考訳(メタデータ) (2021-03-04T15:34:43Z) - Longitudinal Variational Autoencoder [1.4680035572775534]
不足値を含む高次元データを解析するための一般的なアプローチは、変分オートエンコーダ(VAE)を用いた低次元表現を学習することである。
標準的なVAEは、学習した表現はi.d.であり、データサンプル間の相関を捉えることができないと仮定する。
本稿では,多出力加法的ガウス過程(GP)を用いて,構造化された低次元表現を学習するVAEの能力を拡張した縦型VAE(L-VAE)を提案する。
我々の手法は時間変化の共有効果とランダム効果の両方に同時に対応でき、構造化された低次元表現を生成する。
論文 参考訳(メタデータ) (2020-06-17T10:30:14Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。