Automatic classification of stop realisation with wav2vec2.0
- URL: http://arxiv.org/abs/2505.23688v2
- Date: Fri, 30 May 2025 03:54:35 GMT
- Title: Automatic classification of stop realisation with wav2vec2.0
- Authors: James Tanner, Morgan Sonderegger, Jane Stuart-Smith, Jeff Mielke, Tyler Kendall,
- Abstract summary: We show that wav2vec2.0 models can be trained to automatically classify stop burst presence with high accuracy in both English and Japanese.<n>Results demonstrate the potential of pre-trained speech models as tools for the automatic annotation and processing of speech corpus data.
- Score: 0.24466725954625887
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modern phonetic research regularly makes use of automatic tools for the annotation of speech data, however few tools exist for the annotation of many variable phonetic phenomena. At the same time, pre-trained self-supervised models, such as wav2vec2.0, have been shown to perform well at speech classification tasks and latently encode fine-grained phonetic information. We demonstrate that wav2vec2.0 models can be trained to automatically classify stop burst presence with high accuracy in both English and Japanese, robust across both finely-curated and unprepared speech corpora. Patterns of variability in stop realisation are replicated with the automatic annotations, and closely follow those of manual annotations. These results demonstrate the potential of pre-trained speech models as tools for the automatic annotation and processing of speech corpus data, enabling researchers to 'scale-up' the scope of phonetic research with relative ease.
Related papers
- Automatic Proficiency Assessment in L2 English Learners [51.652753736780205]
Second language proficiency (L2) in English is usually perceptually evaluated by English teachers or expert evaluators.<n>This paper explores deep learning techniques for comprehensive L2 proficiency assessment, addressing both the speech signal and its correspondent transcription.
arXiv Detail & Related papers (2025-05-05T12:36:03Z) - Normalization through Fine-tuning: Understanding Wav2vec 2.0 Embeddings for Phonetic Analysis [32.14451400240806]
This study investigates the normalization process within transformer models, especially wav2vec 2.0.<n>We found that fine-tuning wav2vec 2.0 effectively achieves phonetic normalization by selectively suppressing task-irrelevant information.<n>These findings provide new insights into how phonetic normalization can be flexibly achieved in speech models and how it is realized in human speech perception.
arXiv Detail & Related papers (2025-03-04T15:28:10Z) - Exploring Speech Recognition, Translation, and Understanding with
Discrete Speech Units: A Comparative Study [68.88536866933038]
Speech signals, typically sampled at rates in the tens of thousands per second, contain redundancies.
Recent investigations proposed the use of discrete speech units derived from self-supervised learning representations.
Applying various methods, such as de-duplication and subword modeling, can further compress the speech sequence length.
arXiv Detail & Related papers (2023-09-27T17:21:13Z) - Analyzing Robustness of End-to-End Neural Models for Automatic Speech
Recognition [11.489161072526677]
We investigate robustness properties of pre-trained neural models for automatic speech recognition.
In this work, we perform a robustness analysis of the pre-trained neural models wav2vec2, HuBERT and DistilHuBERT on the LibriSpeech and TIMIT datasets.
arXiv Detail & Related papers (2022-08-17T20:00:54Z) - Supervision-Guided Codebooks for Masked Prediction in Speech
Pre-training [102.14558233502514]
Masked prediction pre-training has seen remarkable progress in self-supervised learning (SSL) for speech recognition.
We propose two supervision-guided codebook generation approaches to improve automatic speech recognition (ASR) performance.
arXiv Detail & Related papers (2022-06-21T06:08:30Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
We introduce Wav2Seq, the first self-supervised approach to pre-train both parts of encoder-decoder models for speech data.
We induce a pseudo language as a compact discrete representation, and formulate a self-supervised pseudo speech recognition task.
This process stands on its own, or can be applied as low-cost second-stage pre-training.
arXiv Detail & Related papers (2022-05-02T17:59:02Z) - Enhanced Direct Speech-to-Speech Translation Using Self-supervised
Pre-training and Data Augmentation [76.13334392868208]
Direct speech-to-speech translation (S2ST) models suffer from data scarcity issues.
In this work, we explore self-supervised pre-training with unlabeled speech data and data augmentation to tackle this issue.
arXiv Detail & Related papers (2022-04-06T17:59:22Z) - WavThruVec: Latent speech representation as intermediate features for
neural speech synthesis [1.1470070927586016]
WavThruVec is a two-stage architecture that resolves the bottleneck by using high-dimensional Wav2Vec 2.0 embeddings as intermediate speech representation.
We show that the proposed model not only matches the quality of state-of-the-art neural models, but also presents useful properties enabling tasks like voice conversion or zero-shot synthesis.
arXiv Detail & Related papers (2022-03-31T10:21:08Z) - Self-supervised Learning with Random-projection Quantizer for Speech
Recognition [51.24368930992091]
We present a simple and effective self-supervised learning approach for speech recognition.
The approach learns a model to predict masked speech signals, in the form of discrete labels.
It achieves similar word-error-rates as previous work using self-supervised learning with non-streaming models.
arXiv Detail & Related papers (2022-02-03T21:29:04Z) - On Scaling Contrastive Representations for Low-Resource Speech
Recognition [12.447872366013224]
We train a state-of-the-art speech recognizer on the fixed representations from the computationally demanding wav2vec 2.0 framework.
We find performance to decrease without fine-tuning and, in the extreme low-resource setting, wav2vec 2.0 is inferior to its predecessor.
arXiv Detail & Related papers (2021-02-01T13:58:02Z) - Efficiently Fusing Pretrained Acoustic and Linguistic Encoders for
Low-resource Speech Recognition [9.732767611907068]
In this work, we fuse a pre-trained acoustic encoder (wav2vec2.0) and a pre-trained linguistic encoder (BERT) into an end-to-end ASR model.
Our model achieves better recognition performance on CALLHOME corpus (15 hours) than other end-to-end models.
arXiv Detail & Related papers (2021-01-17T16:12:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.