MMSI-Bench: A Benchmark for Multi-Image Spatial Intelligence
- URL: http://arxiv.org/abs/2505.23764v1
- Date: Thu, 29 May 2025 17:59:52 GMT
- Title: MMSI-Bench: A Benchmark for Multi-Image Spatial Intelligence
- Authors: Sihan Yang, Runsen Xu, Yiman Xie, Sizhe Yang, Mo Li, Jingli Lin, Chenming Zhu, Xiaochen Chen, Haodong Duan, Xiangyu Yue, Dahua Lin, Tai Wang, Jiangmiao Pang,
- Abstract summary: MMSI-Bench is a VQA benchmark dedicated to multi-image spatial intelligence.<n>We conduct extensive experiments and thoroughly evaluate 34 open-source and proprietary MLLMs.<n>The strongest open-source model attains roughly 30% accuracy and OpenAI's o3 reasoning model reaches 40%, while humans score 97%.
- Score: 50.38961770108891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial intelligence is essential for multimodal large language models (MLLMs) operating in the complex physical world. Existing benchmarks, however, probe only single-image relations and thus fail to assess the multi-image spatial reasoning that real-world deployments demand. We introduce MMSI-Bench, a VQA benchmark dedicated to multi-image spatial intelligence. Six 3D-vision researchers spent more than 300 hours meticulously crafting 1,000 challenging, unambiguous multiple-choice questions from over 120,000 images, each paired with carefully designed distractors and a step-by-step reasoning process. We conduct extensive experiments and thoroughly evaluate 34 open-source and proprietary MLLMs, observing a wide gap: the strongest open-source model attains roughly 30% accuracy and OpenAI's o3 reasoning model reaches 40%, while humans score 97%. These results underscore the challenging nature of MMSI-Bench and the substantial headroom for future research. Leveraging the annotated reasoning processes, we also provide an automated error analysis pipeline that diagnoses four dominant failure modes, including (1) grounding errors, (2) overlap-matching and scene-reconstruction errors, (3) situation-transformation reasoning errors, and (4) spatial-logic errors, offering valuable insights for advancing multi-image spatial intelligence. Project page: https://runsenxu.com/projects/MMSI_Bench .
Related papers
- Beyond the Visible: Benchmarking Occlusion Perception in Multimodal Large Language Models [17.922450921582794]
Occlusion perception is a critical foundation for human-level spatial understanding.<n>We introduce O-Bench, the first visual question answering (VQA) benchmark specifically designed for occlusion perception.
arXiv Detail & Related papers (2025-08-06T03:39:21Z) - SpatialViz-Bench: Automatically Generated Spatial Visualization Reasoning Tasks for MLLMs [43.82781630267406]
SpatialViz-Bench is a comprehensive benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 automatically generated problems.<n>Our evaluation of 33 state-of-the-art MLLMs reveals wide performance variations and uncovers counter-intuitive findings.
arXiv Detail & Related papers (2025-07-10T10:27:20Z) - SIRI-Bench: Challenging VLMs' Spatial Intelligence through Complex Reasoning Tasks [53.611256895338585]
We introduce SIRI-Bench, a benchmark designed to evaluate Vision-Language Models' spatial intelligence through video-based reasoning tasks.<n> SIRI-Bench comprises nearly 1K video-question-answer triplets, where each problem is embedded in a realistic 3D scene and captured by video.<n>To facilitate large-scale data synthesis, we develop an Automatic Scene Creation Engine.
arXiv Detail & Related papers (2025-06-17T13:40:00Z) - MORSE-500: A Programmatically Controllable Video Benchmark to Stress-Test Multimodal Reasoning [54.47710436807661]
MORSE-500 is a video benchmark composed of 500 fully scripted clips embedded questions spanning six complementary reasoning categories.<n>Each instance is generated using deterministic Python scripts (Manim, Matplotlib, MoviePy), generative video models, and real footage.<n>Unlike static benchmarks that become obsolete once saturated, MORSE-500 is built to evolve.
arXiv Detail & Related papers (2025-06-05T19:12:45Z) - Unfolding Spatial Cognition: Evaluating Multimodal Models on Visual Simulations [61.235500325327585]
Existing AI benchmarks primarily assess verbal reasoning, neglecting the complexities of non-verbal, multi-step visual simulation.<n>We introduce STARE, a benchmark designed to rigorously evaluate multimodal large language models on tasks better solved through visual simulation.<n>Our evaluations show that models excel at reasoning over simpler 2D transformations, but perform close to random chance on more complex tasks.
arXiv Detail & Related papers (2025-06-05T05:09:46Z) - Jigsaw-Puzzles: From Seeing to Understanding to Reasoning in Vision-Language Models [6.569837864665502]
We introduce Jigsaw-Puzzles, a novel benchmark consisting of 1,100 carefully curated real-world images with high spatial complexity.<n>Based on this dataset, we design five tasks to rigorously evaluate vision-language models' spatial perception, structural understanding, and reasoning capabilities.<n>Results show that even the strongest model, Gemini-2.5-Pro, achieves only 77.14% overall accuracy and performs particularly poorly on the Order Generation task.
arXiv Detail & Related papers (2025-05-27T05:17:41Z) - Can Multimodal Large Language Models Understand Spatial Relations? [16.76001474065412]
We introduce SpatialMQA, a human-annotated spatial relation reasoning benchmark based on COCO 2017.<n>Results indicate that the current state-of-the-art MLLM achieves only 48.14% accuracy, far below the human-level accuracy of 98.40%.
arXiv Detail & Related papers (2025-05-25T07:37:34Z) - SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding [64.15606979785355]
Multimodal large language models (MLLMs) have achieved impressive success in question-answering tasks, yet their capabilities for spatial understanding are less explored.<n>This work investigates a critical question: do existing MLLMs possess 3D spatial perception and understanding abilities?
arXiv Detail & Related papers (2025-05-22T17:59:03Z) - Open3DVQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space [44.42918139949761]
We propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of state-of-the-art (SOTA) foundation models in open 3D space.<n>Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator.
arXiv Detail & Related papers (2025-03-14T05:35:38Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.<n>We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.<n>We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models [8.499125564147834]
We present a scalable and unbiased synthetic dataset designed with 4 key capability for spatial reasoning.<n>We develop a cascading evaluation structure, constructing 7 question types across 5 difficulty levels.<n>We observe a general decline in performance as task increases complexity, particularly in 3D reasoning and 6D spatial tasks.
arXiv Detail & Related papers (2025-02-12T18:53:20Z) - Polymath: A Challenging Multi-modal Mathematical Reasoning Benchmark [53.61633384281524]
PolyMATH is a benchmark aimed at evaluating the general cognitive reasoning abilities of MLLMs.
The best scores achieved on PolyMATH are 41%, 36%, and 27%, obtained by Claude-3.5 Sonnet, GPT-4o and Gemini-1.5 Pro respectively.
A further fine-grained error analysis reveals that these models struggle to understand spatial relations and perform drawn-out, high-level reasoning.
arXiv Detail & Related papers (2024-10-06T20:35:41Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.