Large Language Models Often Know When They Are Being Evaluated
- URL: http://arxiv.org/abs/2505.23836v3
- Date: Wed, 16 Jul 2025 11:25:40 GMT
- Title: Large Language Models Often Know When They Are Being Evaluated
- Authors: Joe Needham, Giles Edkins, Govind Pimpale, Henning Bartsch, Marius Hobbhahn,
- Abstract summary: We investigate whether frontier language models can accurately classify transcripts based on whether they originate from evaluations or real-world deployment.<n>We construct a benchmark of 1,000 prompts and transcripts from 61 distinct datasets.<n>Our results indicate that frontier models already exhibit a substantial, though not yet, level of evaluation-awareness.
- Score: 0.015534429177540245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: If AI models can detect when they are being evaluated, the effectiveness of evaluations might be compromised. For example, models could have systematically different behavior during evaluations, leading to less reliable benchmarks for deployment and governance decisions. We investigate whether frontier language models can accurately classify transcripts based on whether they originate from evaluations or real-world deployment, a capability we call evaluation awareness. To achieve this, we construct a diverse benchmark of 1,000 prompts and transcripts from 61 distinct datasets. These span public benchmarks (e.g., MMLU, SWEBench), real-world deployment interactions, and agent trajectories from scaffolding frameworks (e.g., web-browsing agents). Frontier models clearly demonstrate above-random evaluation awareness (Gemini-2.5-Pro reaches an AUC of $0.83$), but do not yet surpass our simple human baseline (AUC of $0.92$). Furthermore, both AI models and humans are better at identifying evaluations in agentic settings compared to chat settings. Additionally, we test whether models can identify the purpose of the evaluation. Under multiple-choice and open-ended questioning, AI models far outperform random chance in identifying what an evaluation is testing for. Our results indicate that frontier models already exhibit a substantial, though not yet superhuman, level of evaluation-awareness. We recommend tracking this capability in future models.
Related papers
- PentestJudge: Judging Agent Behavior Against Operational Requirements [0.0]
PentestJudge is a system for evaluating operations of penetration testing agents.<n>We evaluate several models acting as judge agents, with the best model reaching an F1 score of 0.83.
arXiv Detail & Related papers (2025-08-04T21:52:50Z) - Where is this coming from? Making groundedness count in the evaluation of Document VQA models [12.951716701565019]
We argue that common evaluation metrics do not account for the semantic and multimodal groundedness of a model's outputs.<n>We propose a new evaluation methodology that accounts for the groundedness of predictions.<n>Our proposed methodology is parameterized in such a way that users can configure the score according to their preferences.
arXiv Detail & Related papers (2025-03-24T20:14:46Z) - A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
We introduce the first formal probabilistic evaluation framework for Large Language Models (LLMs)<n> Namely, we propose novel metrics with high probability guarantees concerning the output distribution of a model.<n>Our metrics are application-independent and allow practitioners to make more reliable estimates about model capabilities before deployment.
arXiv Detail & Related papers (2024-10-04T15:44:23Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Bench is a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks.<n>A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation.
arXiv Detail & Related papers (2024-06-09T12:30:30Z) - Auditing an Automatic Grading Model with deep Reinforcement Learning [0.0]
We explore the use of deep reinforcement learning to audit an automatic short answer grading (ASAG) model.
We show that a high level of agreement to human ratings does not give sufficient evidence that an ASAG model is infallible.
arXiv Detail & Related papers (2024-05-11T20:07:09Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
We propose MMBench, a benchmark for assessing the multi-modal capabilities of vision-language models.
MMBench is meticulously curated with well-designed quality control schemes.
MMBench incorporates multiple-choice questions in both English and Chinese versions.
arXiv Detail & Related papers (2023-07-12T16:23:09Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
We evaluate the current state-of-the-art AES models using a model adversarial evaluation scheme and associated metrics.
We find that AES models are highly overstable. Even heavy modifications(as much as 25%) with content unrelated to the topic of the questions do not decrease the score produced by the models.
arXiv Detail & Related papers (2020-07-14T03:49:43Z) - Learning to Compare for Better Training and Evaluation of Open Domain
Natural Language Generation Models [23.62054164511058]
We propose to evaluate natural language generation models by learning to compare a pair of generated sentences by fine-tuning BERT.
While able to be trained in a fully self-supervised fashion, our model can be further fine-tuned with a little amount of human preference annotation.
arXiv Detail & Related papers (2020-02-12T15:52:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.