Scalable, Symbiotic, AI and Non-AI Agent Based Parallel Discrete Event Simulations
- URL: http://arxiv.org/abs/2505.23846v1
- Date: Wed, 28 May 2025 17:50:01 GMT
- Title: Scalable, Symbiotic, AI and Non-AI Agent Based Parallel Discrete Event Simulations
- Authors: Atanu Barai, Stephan Eidenbenz, Nandakishore Santhi,
- Abstract summary: This paper introduces a novel parallel discrete event simulation (PDES) based methodology to combine multiple AI and non-AI agents.<n>We evaluate our approach by solving four problems from four different domains and comparing the results with those from AI models alone.<n>Results show that overall accuracy of our approach is 68% where as the accuracy of vanilla models is less than 23%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To fully leverage the potential of artificial intelligence (AI) systems in a trustworthy manner, it is desirable to couple multiple AI and non-AI systems together seamlessly for constraining and ensuring correctness of the output. This paper introduces a novel parallel discrete event simulation (PDES) based methodology to combine multiple AI and non-AI agents in a causal, rule-based way. Our approach tightly integrates the concept of passage of time, with each agent considered as an entity in the PDES framework and responding to prior requests from other agents. Such coupling mechanism enables the agents to work in a co-operative environment towards a common goal while many tasks run in parallel throughout the simulation. It further enables setting up boundaries to the outputs of the AI agents by applying necessary dynamic constraints using non-AI agents while allowing for scalability through deployment of hundreds of such agents in a larger compute cluster. Distributing smaller AI agents can enable extremely scalable simulations in the future, addressing local memory bottlenecks for model parameter storage. Within a PDES involving both AI and non-AI agents, we break down the problem at hand into structured steps, when necessary, providing a set of multiple choices to the AI agents, and then progressively solve these steps towards a final goal. At each step, the non-AI agents act as unbiased auditors, verifying each action by the AI agents so that certain rules of engagement are followed. We evaluate our approach by solving four problems from four different domains and comparing the results with those from AI models alone. Our results show greater accuracy in solving problems from various domains where the AI models struggle to solve the problems solely by themselves. Results show that overall accuracy of our approach is 68% where as the accuracy of vanilla models is less than 23%.
Related papers
- AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [0.36868085124383626]
This study critically distinguishes between AI Agents and Agentic AI, offering a structured conceptual taxonomy, application mapping, and challenge analysis.<n>Generative AI is positioned as a precursor, with AI Agents advancing through tool integration, prompt engineering, and reasoning enhancements.<n>Agentic AI systems represent a paradigmatic shift marked by multi-agent collaboration, dynamic task decomposition, persistent memory, and orchestrated autonomy.
arXiv Detail & Related papers (2025-05-15T16:21:33Z) - Bi-LSTM based Multi-Agent DRL with Computation-aware Pruning for Agent Twins Migration in Vehicular Embodied AI Networks [20.574619097682923]
In intelligent transportation, the combination of large language models and embodied Artificial Intelligence (AI) spawns the Vehicular Embodied AI Network (VEANs)<n>In VEANs, Autonomous Vehicles (AVs) are typical agents whose local advanced AI applications are defined as vehicular embodied AI agents.<n>Due to latency and resource constraints, the local AI applications and services running on vehicular embodied AI agents need to be migrated.
arXiv Detail & Related papers (2025-05-09T18:52:26Z) - AI2Agent: An End-to-End Framework for Deploying AI Projects as Autonomous Agents [15.802600809497097]
This paper introduces AI2Agent, an end-to-end framework that automates AI project deployment through guideline-driven execution.<n>We conducted experiments on 30 AI deployment cases, covering TTS, text-to-image generation, image editing, and other AI applications.<n>Results show that AI2Agent significantly reduces deployment time and improves success rates.
arXiv Detail & Related papers (2025-03-31T10:58:34Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents [44.34340798542]
Large Language Models (LLMs) have shown remarkable capabilities in natural language tasks requiring complex reasoning.
Traditional supervised pre-training on static datasets falls short in enabling autonomous agent capabilities.
We propose a framework that combines guided Monte Carlo Tree Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on agent interactions.
arXiv Detail & Related papers (2024-08-13T20:52:13Z) - Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts [20.8288955218712]
We propose a framework where a principal guides an agent in a Markov Decision Process (MDP) using a series of contracts.
We present and analyze a meta-algorithm that iteratively optimize the policies of the principal and agent.
We then scale our algorithm with deep Q-learning and analyze its convergence in the presence of approximation error.
arXiv Detail & Related papers (2024-07-25T14:28:58Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.