Sparsity-Driven Parallel Imaging Consistency for Improved Self-Supervised MRI Reconstruction
- URL: http://arxiv.org/abs/2505.24136v1
- Date: Fri, 30 May 2025 02:11:25 GMT
- Title: Sparsity-Driven Parallel Imaging Consistency for Improved Self-Supervised MRI Reconstruction
- Authors: Yaşar Utku Alçalar, Mehmet Akçakaya,
- Abstract summary: We propose a novel way to train PD-DL networks via carefully-designed perturbations.<n>We show that the proposed training strategy effectively reduces aliasing artifacts and mitigates noise amplification at high acceleration rates.
- Score: 2.8237889121096034
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics-driven deep learning (PD-DL) models have proven to be a powerful approach for improved reconstruction of rapid MRI scans. In order to train these models in scenarios where fully-sampled reference data is unavailable, self-supervised learning has gained prominence. However, its application at high acceleration rates frequently introduces artifacts, compromising image fidelity. To mitigate this shortcoming, we propose a novel way to train PD-DL networks via carefully-designed perturbations. In particular, we enhance the k-space masking idea of conventional self-supervised learning with a novel consistency term that assesses the model's ability to accurately predict the added perturbations in a sparse domain, leading to more reliable and artifact-free reconstructions. The results obtained from the fastMRI knee and brain datasets show that the proposed training strategy effectively reduces aliasing artifacts and mitigates noise amplification at high acceleration rates, outperforming state-of-the-art self-supervised methods both visually and quantitatively.
Related papers
- Restoration Score Distillation: From Corrupted Diffusion Pretraining to One-Step High-Quality Generation [82.39763984380625]
We propose textitRestoration Score Distillation (RSD), a principled generalization of Denoising Score Distillation (DSD)<n>RSD accommodates a broader range of corruption types, such as blurred, incomplete, or low-resolution images.<n>It consistently surpasses its teacher model across diverse restoration tasks on both natural and scientific datasets.
arXiv Detail & Related papers (2025-05-19T17:21:03Z) - Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
We propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues.<n>We design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction.<n> Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
arXiv Detail & Related papers (2025-01-07T12:29:32Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
We introduce deep unrolled self-supervised learning, which alleviates the need for such data by training a sequence-specific, model-based autoencoder.
Our proposed method exceeds the performance of its supervised counterparts.
arXiv Detail & Related papers (2024-03-25T17:40:32Z) - Unsupervised Adaptive Implicit Neural Representation Learning for
Scan-Specific MRI Reconstruction [8.721677700107639]
We propose an unsupervised, adaptive coarse-to-fine framework that enhances reconstruction quality without being constrained by the sparsity levels or patterns in under-sampling.
We integrate a novel learning strategy that progressively refines the use of acquired k-space signals for self-supervision.
Our method outperforms current state-of-the-art scan-specific MRI reconstruction techniques, for up to 8-fold under-sampling.
arXiv Detail & Related papers (2023-12-01T16:00:16Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Self-Supervised MRI Reconstruction with Unrolled Diffusion Models [27.143473617162304]
We propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon)
SSDiffRecon expresses a conditional diffusion process that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing.
Experiments on public brain MR datasets demonstrate the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality.
arXiv Detail & Related papers (2023-06-29T03:31:46Z) - Rethinking the optimization process for self-supervised model-driven MRI
reconstruction [16.5013498806588]
K2Calibrate is a K-space adaptation strategy for self-supervised model-driven MR reconstruction optimization.
It can reduce the network's reconstruction deterioration caused by statistically dependent noise.
It achieves better results than five state-of-the-art methods.
arXiv Detail & Related papers (2022-03-18T03:41:36Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - 20-fold Accelerated 7T fMRI Using Referenceless Self-Supervised Deep
Learning Reconstruction [0.487576911714538]
High-temporal resolution across the whole brain is essential to accurately resolve neural activities in fMRI.
Deep learning (DL) reconstruction techniques have recently gained interest for improving highly-accelerated MRI imaging.
In this study, we utilize a self-supervised physics-guided DL reconstruction on a 5-fold SMS and 4-fold inplane accelerated 7T fMRI data.
arXiv Detail & Related papers (2021-05-12T17:39:16Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.