Beyond Exponential Decay: Rethinking Error Accumulation in Large Language Models
- URL: http://arxiv.org/abs/2505.24187v1
- Date: Fri, 30 May 2025 03:57:31 GMT
- Title: Beyond Exponential Decay: Rethinking Error Accumulation in Large Language Models
- Authors: Mikhail L. Arbuzov, Alexey A. Shvets, Sisong Beir,
- Abstract summary: We show that errors are not uniformly distributed but are concentrated at sparse "key tokens" representing critical decision junctions.<n>We propose a framework for next-generation systems centered on selective preservation of semantically vital tokens.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prevailing assumption of an exponential decay in large language model (LLM) reliability with sequence length, predicated on independent per-token error probabilities, posits an inherent limitation for long autoregressive outputs. Our research fundamentally challenges this view by synthesizing emerging evidence that LLM errors are not uniformly distributed but are concentrated at sparse "key tokens" ($5-10\%$ of total tokens) representing critical decision junctions. By distinguishing these high-impact tokens from the increasingly predictable majority, we introduce a new reliability formula explaining the sustained coherence of modern LLMs over thousands of tokens. Converging research streams reveal that long-context performance primarily depends on accurately navigating a few crucial semantic decision points rather than on uniform token-level accuracy, enabling targeted strategies that significantly outperform brute-force approaches. We thus propose a framework for next-generation systems centered on selective preservation of semantically vital tokens, dynamic computational allocation at uncertain decision boundaries, multi-path exploration at ambiguities, and architectures aligned with natural semantic domains. This marks a fundamental shift from raw scaling to strategic reasoning, promising breakthrough performance without proportionate computational scaling and offering a more nuanced understanding that supersedes the exponential decay hypothesis, thereby opening pathways toward substantially more powerful and efficient language systems.
Related papers
- Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning [71.3533541927459]
We propose a novel data selection paradigm termed Activation Reasoning Potential (RAP)<n>RAP identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning.<n>Our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%.
arXiv Detail & Related papers (2025-06-05T08:40:24Z) - Hybrid Latent Reasoning via Reinforcement Learning [51.06635386903026]
We explore latent reasoning by leveraging the capabilities of large language models (LLMs) via reinforcement learning (RL)<n>We introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that integrates prior hidden states into sampled tokens with a learnable gating mechanism.<n>HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths.
arXiv Detail & Related papers (2025-05-24T01:26:16Z) - QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning? [4.429189958406034]
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL)<n>We propose a novel algorithm, textbfQLLM, which facilitates the automatic construction of credit assignment functions using large language models (LLMs)<n>Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-17T14:07:11Z) - Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection [49.15148871877941]
Next-token distribution outputs offer a theoretically appealing approach for detection of large language models (LLMs)<n>We propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length.<n>PAWN shows competitive and even better performance in-distribution than the strongest baselines with a fraction of their trainable parameters.
arXiv Detail & Related papers (2025-01-07T17:00:49Z) - Improving Uncertainty Quantification in Large Language Models via Semantic Embeddings [11.33157177182775]
Accurately quantifying uncertainty in large language models (LLMs) is crucial for their reliable deployment.
Current state-of-the-art methods for measuring semantic uncertainty in LLMs rely on strict bidirectional entailment criteria.
We propose a novel approach that leverages semantic embeddings to achieve smoother and more robust estimation of semantic uncertainty.
arXiv Detail & Related papers (2024-10-30T04:41:46Z) - Path-Consistency: Prefix Enhancement for Efficient Inference in LLM [3.309813585671485]
textitpath-consistency mitigates both the errors and redundancies from random or less useful sampling in self-consistency.<n>textitpath-consistency achieves significant acceleration in inference latency ranging from $7.8%$ to $40.5%$.
arXiv Detail & Related papers (2024-08-25T01:45:53Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks.
Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs.
We show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform simple aggregation strategies.
arXiv Detail & Related papers (2024-04-15T21:02:48Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
offline reinforcement learning aims to learn to perform decision making from history data without active exploration.
Due to uncertainties and variabilities of the environment, it is critical to learn a robust policy that performs well even when the deployed environment deviates from the nominal one used to collect the history dataset.
We consider a distributionally robust formulation of offline RL, focusing on robust Markov decision processes with an uncertainty set specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings.
arXiv Detail & Related papers (2022-08-11T11:55:31Z) - Discrete Variational Attention Models for Language Generation [51.88612022940496]
We propose a discrete variational attention model with categorical distribution over the attention mechanism owing to the discrete nature in languages.
Thanks to the property of discreteness, the training of our proposed approach does not suffer from posterior collapse.
arXiv Detail & Related papers (2020-04-21T05:49:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.