Hybrid Latent Reasoning via Reinforcement Learning
- URL: http://arxiv.org/abs/2505.18454v1
- Date: Sat, 24 May 2025 01:26:16 GMT
- Title: Hybrid Latent Reasoning via Reinforcement Learning
- Authors: Zhenrui Yue, Bowen Jin, Huimin Zeng, Honglei Zhuang, Zhen Qin, Jinsung Yoon, Lanyu Shang, Jiawei Han, Dong Wang,
- Abstract summary: We explore latent reasoning by leveraging the capabilities of large language models (LLMs) via reinforcement learning (RL)<n>We introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that integrates prior hidden states into sampled tokens with a learnable gating mechanism.<n>HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths.
- Score: 51.06635386903026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have introduced latent reasoning as a promising alternative to autoregressive reasoning. By performing internal computation with hidden states from previous steps, latent reasoning benefit from more informative features rather than sampling a discrete chain-of-thought (CoT) path. Yet latent reasoning approaches are often incompatible with LLMs, as their continuous paradigm conflicts with the discrete nature of autoregressive generation. Moreover, these methods rely on CoT traces for training and thus fail to exploit the inherent reasoning patterns of LLMs. In this work, we explore latent reasoning by leveraging the intrinsic capabilities of LLMs via reinforcement learning (RL). To this end, we introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that (1) integrates prior hidden states into sampled tokens with a learnable gating mechanism, and (2) initializes training with predominantly token embeddings while progressively incorporating more hidden features. This design maintains LLMs' generative capabilities and incentivizes hybrid reasoning using both discrete and continuous representations. In addition, the hybrid HRPO introduces stochasticity into latent reasoning via token sampling, thereby enabling RL-based optimization without requiring CoT trajectories. Extensive evaluations across diverse benchmarks show that HRPO outperforms prior methods in both knowledge- and reasoning-intensive tasks. Furthermore, HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths, highlighting the potential of our RL-based approach and offer insights for future work in latent reasoning.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - CTRLS: Chain-of-Thought Reasoning via Latent State-Transition [57.51370433303236]
Chain-of-thought (CoT) reasoning enables large language models to break down complex problems into interpretable intermediate steps.<n>We introduce groundingS, a framework that formulates CoT reasoning as a Markov decision process (MDP) with latent state transitions.<n>We show improvements in reasoning accuracy, diversity, and exploration efficiency across benchmark reasoning tasks.
arXiv Detail & Related papers (2025-07-10T21:32:18Z) - Reasoning with Exploration: An Entropy Perspective on Reinforcement Learning for LLMs [112.40801692473723]
Balancing exploration and exploitation is a central goal in reinforcement learning (RL)<n>We introduce a minimal modification to standard RL with only one line of code: augmenting the advantage function with an entropy-based term.<n>Our method achieves significant gains on the Pass@K metric, even when evaluated with extremely large K values.
arXiv Detail & Related papers (2025-06-17T17:54:03Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - Extended Inductive Reasoning for Personalized Preference Inference from Behavioral Signals [45.019257216564036]
This paper investigates extended inductive reasoning in large language models (LLMs) through the lens of personalized preference inference.<n>We propose textscAlignXplore, a model that leverages extended reasoning chains to enable systematic preference inference from behavioral signals in users' interaction histories.<n>We demonstrate that textscAlignXplore achieves substantial improvements over the backbone model by an average of 11.05% on in-domain and out-of-domain benchmarks.
arXiv Detail & Related papers (2025-05-23T16:16:46Z) - LeTS: Learning to Think-and-Search via Process-and-Outcome Reward Hybridization [30.95342819013663]
Large language models (LLMs) have demonstrated impressive capabilities in reasoning.<n>Recent research focuses on integrating reasoning capabilities into the realm of retrieval-augmented generation (RAG) via outcome-supervised reinforcement learning (RL) approaches.<n>We propose Learning to Think-and-Search (LeTS), a novel framework that hybridizes stepwise process reward and outcome-based reward to current RL methods for RAG.
arXiv Detail & Related papers (2025-05-23T04:04:05Z) - LARES: Latent Reasoning for Sequential Recommendation [96.26996622771593]
We present LARES, a novel and scalable LAtent REasoning framework for Sequential recommendation.<n>Our proposed approach employs a recurrent architecture that allows flexible expansion of reasoning depth without increasing parameter complexity.<n>We show that LARES exhibits seamless compatibility with existing advanced models, further improving their recommendation performance.
arXiv Detail & Related papers (2025-05-22T16:22:54Z) - Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
Large Language Models (LLMs) display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation.<n>RLMs often demonstrate counterintuitive and unstable behaviors, such as performance degradation under few-shot prompting.<n>We introduce a unified graph-based analytical framework for better modeling the reasoning processes of RLMs.
arXiv Detail & Related papers (2025-05-20T03:54:57Z) - RL in Name Only? Analyzing the Structural Assumptions in RL post-training for LLMs [14.78605805191225]
Reinforcement learning-based post-training of large language models (LLMs) has recently gained attention.<n>We critically examine the formulation and assumptions underlying these methods.
arXiv Detail & Related papers (2025-05-19T19:57:15Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - R1-VL: Learning to Reason with Multimodal Large Language Models via Step-wise Group Relative Policy Optimization [86.32257216965229]
We propose a new online reinforcement learning framework that enables MLLMs to self-improve reasoning ability via simple, effective and dense step-wise rewarding.<n>StepGRPO introduces two novel rule-based reasoning rewards: Step-wise Reasoning Accuracy Reward (StepRAR) and Step-wise Reasoning Validity Reward (StepRVR)<n>With the proposed StepGRPO, we introduce R1-VL, a series of MLLMs with outstanding capabilities in step-by-step reasoning.
arXiv Detail & Related papers (2025-03-17T08:51:44Z) - Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models [33.13238566815798]
Large Language Models (LLMs) have sparked significant research interest in leveraging them to tackle complex reasoning tasks.<n>Recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can significantly boost reasoning accuracy.<n>The introduction of OpenAI's o1 series marks a significant milestone in this research direction.
arXiv Detail & Related papers (2025-01-16T17:37:58Z) - OCEAN: Offline Chain-of-thought Evaluation and Alignment in Large Language Models [68.17018458283651]
This work focuses on the offline evaluation of the chain-of-thought capabilities of LLMs.
We use knowledge graphs (e.g., Wikidata5m) to provide feedback on the generated chain of thoughts.
We show how to optimize LLMs based on the proposed evaluation method.
arXiv Detail & Related papers (2024-10-31T07:48:44Z) - Eliminating Reasoning via Inferring with Planning: A New Framework to
Guide LLMs' Non-linear Thinking [40.22335733384235]
Chain-of-Thought(CoT) prompting and its variants explore equipping large language models with high-level reasoning abilities.
We propose textbfInferential textbfExclusion textbfPrompting (IEP), a novel prompting that combines the principles of elimination and inference.
arXiv Detail & Related papers (2023-10-18T21:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.