SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems
- URL: http://arxiv.org/abs/2505.24201v1
- Date: Fri, 30 May 2025 04:25:19 GMT
- Title: SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems
- Authors: Xu He, Di Wu, Yan Zhai, Kun Sun,
- Abstract summary: We present a system-level anomaly detection framework tailored for large language model (LLM)-based multi-agent systems (MAS)<n>We propose a graph-based framework that models agent interactions as dynamic execution graphs, enabling semantic anomaly detection at node, edge, and path levels.<n>Second, we introduce a pluggable SentinelAgent, an LLM-powered oversight agent that observes, analyzes, and intervenes in MAS execution based on security policies and contextual reasoning.
- Score: 11.497269773189254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of large language model (LLM)-based multi-agent systems (MAS) introduces new security and reliability challenges. While these systems show great promise in decomposing and coordinating complex tasks, they also face multi-faceted risks across prompt manipulation, unsafe tool usage, and emergent agent miscoordination. Existing guardrail mechanisms offer only partial protection, primarily at the input-output level, and fall short in addressing systemic or multi-point failures in MAS. In this work, we present a system-level anomaly detection framework tailored for MAS, integrating structural modeling with runtime behavioral oversight. Our approach consists of two components. First, we propose a graph-based framework that models agent interactions as dynamic execution graphs, enabling semantic anomaly detection at node, edge, and path levels. Second, we introduce a pluggable SentinelAgent, an LLM-powered oversight agent that observes, analyzes, and intervenes in MAS execution based on security policies and contextual reasoning. By bridging abstract detection logic with actionable enforcement, our method detects not only single-point faults and prompt injections but also multi-agent collusion and latent exploit paths. We validate our framework through two case studies, including an email assistant and Microsoft's Magentic-One system, demonstrating its ability to detect covert risks and provide explainable root-cause attribution. Our work lays the foundation for more trustworthy, monitorable, and secure agent-based AI ecosystems.
Related papers
- From MAS to MARS: Coordination Failures and Reasoning Trade-offs in Hierarchical Multi-Agent Robotic Systems within a Healthcare Scenario [3.5262044630932254]
Multi-agent robotic systems (MARS) build upon multi-agent systems by integrating physical and task-related constraints.<n>Despite the availability of advanced multi-agent frameworks, their real-world deployment on robots remains limited.
arXiv Detail & Related papers (2025-08-06T17:54:10Z) - AgentSight: System-Level Observability for AI Agents Using eBPF [10.37440633887049]
Existing tools observe either an agent's high-level intent (via LLM prompts) or its low-level actions (e.g., system calls) but cannot correlate these two views.<n>We introduce AgentSight, an AgentOps observability framework that bridges this semantic gap using a hybrid approach.<n>AgentSight intercepts TLS-encrypted LLM traffic to extract semantic intent, monitors kernel events to observe system-wide effects, and causally correlates these two streams across process boundaries.
arXiv Detail & Related papers (2025-08-02T01:43:39Z) - Towards Unifying Quantitative Security Benchmarking for Multi Agent Systems [0.0]
Evolving AI systems increasingly deploy multi-agent architectures where autonomous agents collaborate, share information, and delegate tasks through developing protocols.<n>One such risk is a cascading risk: a breach in one agent can cascade through the system, compromising others by exploiting inter-agent trust.<n>In an ACI attack, a malicious input or tool exploit injected at one agent leads to cascading compromises and amplified downstream effects across agents that trust its outputs.
arXiv Detail & Related papers (2025-07-23T13:51:28Z) - SafeMobile: Chain-level Jailbreak Detection and Automated Evaluation for Multimodal Mobile Agents [58.21223208538351]
This work explores the security issues surrounding mobile multimodal agents.<n>It attempts to construct a risk discrimination mechanism by incorporating behavioral sequence information.<n>It also designs an automated assisted assessment scheme based on a large language model.
arXiv Detail & Related papers (2025-07-01T15:10:00Z) - Demonstrations of Integrity Attacks in Multi-Agent Systems [7.640342064257848]
Multi-Agent Systems (MAS) could be vulnerable to malicious agents that exploit the system to serve self-interests without disrupting its core functionality.<n>This work explores integrity attacks where malicious agents employ subtle prompt manipulation to bias MAS operations and gain various benefits.
arXiv Detail & Related papers (2025-06-05T02:44:49Z) - ATAG: AI-Agent Application Threat Assessment with Attack Graphs [23.757154032523093]
This paper introduces AI-agent application Threat assessment with Attack Graphs (ATAG)<n>ATAG is a novel framework designed to systematically analyze the security risks associated with AI-agent applications.<n>It facilitates proactive identification and mitigation of AI-agent threats in multi-agent applications.
arXiv Detail & Related papers (2025-06-03T13:25:40Z) - CoTGuard: Using Chain-of-Thought Triggering for Copyright Protection in Multi-Agent LLM Systems [55.57181090183713]
We introduce CoTGuard, a novel framework for copyright protection that leverages trigger-based detection within Chain-of-Thought reasoning.<n>Specifically, we can activate specific CoT segments and monitor intermediate reasoning steps for unauthorized content reproduction by embedding specific trigger queries into agent prompts.<n>This approach enables fine-grained, interpretable detection of copyright violations in collaborative agent scenarios.
arXiv Detail & Related papers (2025-05-26T01:42:37Z) - AGENTFUZZER: Generic Black-Box Fuzzing for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentXploit, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentXploit on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
Failure attribution in LLM multi-agent systems remains underexplored and labor-intensive.<n>We develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons.<n>The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps.
arXiv Detail & Related papers (2025-04-30T23:09:44Z) - Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System [0.8136541584281987]
This work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations.<n>We develop an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models.<n>The detection capabilities are strong such as 94% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks.
arXiv Detail & Related papers (2025-02-23T23:35:15Z) - On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents [58.79302663733703]
Large language model-based multi-agent systems have shown great abilities across various tasks due to the collaboration of expert agents.<n>The impact of clumsy or even malicious agents--those who frequently make errors in their tasks--on the overall performance of the system remains underexplored.<n>This paper investigates what is the resilience of various system structures under faulty agents on different downstream tasks.
arXiv Detail & Related papers (2024-08-02T03:25:20Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.<n>We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.<n>We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.