AgentSight: System-Level Observability for AI Agents Using eBPF
- URL: http://arxiv.org/abs/2508.02736v1
- Date: Sat, 02 Aug 2025 01:43:39 GMT
- Title: AgentSight: System-Level Observability for AI Agents Using eBPF
- Authors: Yusheng Zheng, Yanpeng Hu, Tong Yu, Andi Quinn,
- Abstract summary: Existing tools observe either an agent's high-level intent (via LLM prompts) or its low-level actions (e.g., system calls) but cannot correlate these two views.<n>We introduce AgentSight, an AgentOps observability framework that bridges this semantic gap using a hybrid approach.<n>AgentSight intercepts TLS-encrypted LLM traffic to extract semantic intent, monitors kernel events to observe system-wide effects, and causally correlates these two streams across process boundaries.
- Score: 10.37440633887049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern software infrastructure increasingly relies on LLM agents for development and maintenance, such as Claude Code and Gemini-cli. However, these AI agents differ fundamentally from traditional deterministic software, posing a significant challenge to conventional monitoring and debugging. This creates a critical semantic gap: existing tools observe either an agent's high-level intent (via LLM prompts) or its low-level actions (e.g., system calls), but cannot correlate these two views. This blindness makes it difficult to distinguish between benign operations, malicious attacks, and costly failures. We introduce AgentSight, an AgentOps observability framework that bridges this semantic gap using a hybrid approach. Our approach, boundary tracing, monitors agents from outside their application code at stable system interfaces using eBPF. AgentSight intercepts TLS-encrypted LLM traffic to extract semantic intent, monitors kernel events to observe system-wide effects, and causally correlates these two streams across process boundaries using a real-time engine and secondary LLM analysis. This instrumentation-free technique is framework-agnostic, resilient to rapid API changes, and incurs less than 3% performance overhead. Our evaluation shows AgentSight detects prompt injection attacks, identifies resource-wasting reasoning loops, and reveals hidden coordination bottlenecks in multi-agent systems. AgentSight is released as an open-source project at https://github.com/agent-sight/agentsight.
Related papers
- AgentArmor: Enforcing Program Analysis on Agent Runtime Trace to Defend Against Prompt Injection [8.266563350981984]
Large Language Model (LLM) agents offer a powerful new paradigm for solving various problems by combining natural language reasoning with the execution of external tools.<n>In this work, we propose a novel insight that treats the agent runtime traces as structured programs with analyzable semantics.<n>We present AgentArmor, a program analysis framework that converts agent traces into graph intermediate representation-based structured program dependency representations.
arXiv Detail & Related papers (2025-08-02T07:59:34Z) - ATAG: AI-Agent Application Threat Assessment with Attack Graphs [23.757154032523093]
This paper introduces AI-agent application Threat assessment with Attack Graphs (ATAG)<n>ATAG is a novel framework designed to systematically analyze the security risks associated with AI-agent applications.<n>It facilitates proactive identification and mitigation of AI-agent threats in multi-agent applications.
arXiv Detail & Related papers (2025-06-03T13:25:40Z) - SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems [11.497269773189254]
We present a system-level anomaly detection framework tailored for large language model (LLM)-based multi-agent systems (MAS)<n>We propose a graph-based framework that models agent interactions as dynamic execution graphs, enabling semantic anomaly detection at node, edge, and path levels.<n>Second, we introduce a pluggable SentinelAgent, an LLM-powered oversight agent that observes, analyzes, and intervenes in MAS execution based on security policies and contextual reasoning.
arXiv Detail & Related papers (2025-05-30T04:25:19Z) - CoTGuard: Using Chain-of-Thought Triggering for Copyright Protection in Multi-Agent LLM Systems [55.57181090183713]
We introduce CoTGuard, a novel framework for copyright protection that leverages trigger-based detection within Chain-of-Thought reasoning.<n>Specifically, we can activate specific CoT segments and monitor intermediate reasoning steps for unauthorized content reproduction by embedding specific trigger queries into agent prompts.<n>This approach enables fine-grained, interpretable detection of copyright violations in collaborative agent scenarios.
arXiv Detail & Related papers (2025-05-26T01:42:37Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentVigil, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentVigil on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
Failure attribution in LLM multi-agent systems remains underexplored and labor-intensive.<n>We develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons.<n>The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps.
arXiv Detail & Related papers (2025-04-30T23:09:44Z) - Les Dissonances: Cross-Tool Harvesting and Polluting in Multi-Tool Empowered LLM Agents [15.15485816037418]
This paper presents the first systematic security analysis of task control flows in multi-tool-enabled LLM agents.<n>We identify a novel threat, Cross-Tool Harvesting and Polluting (XTHP), which includes multiple attack vectors.<n>To understand the impact of this threat, we developed Chord, a dynamic scanning tool designed to automatically detect real-world agent tools susceptible to XTHP attacks.
arXiv Detail & Related papers (2025-04-04T01:41:06Z) - PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC [98.82146219495792]
In this paper, we propose a hierarchical agent framework named PC-Agent.<n>From the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content.<n>From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture.
arXiv Detail & Related papers (2025-02-20T05:41:55Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.<n>We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.<n>We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
We propose GuardAgent, the first guardrail agent to protect target agents by dynamically checking whether their actions satisfy given safety guard requests.<n>Specifically, GuardAgent first analyzes the safety guard requests to generate a task plan, and then maps this plan into guardrail code for execution.<n>We show that GuardAgent effectively moderates the violation actions for different types of agents on two benchmarks with over 98% and 83% guardrail accuracies, respectively.
arXiv Detail & Related papers (2024-06-13T14:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.