論文の概要: An Adversary-Resistant Multi-Agent LLM System via Credibility Scoring
- arxiv url: http://arxiv.org/abs/2505.24239v1
- Date: Fri, 30 May 2025 05:57:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.791467
- Title: An Adversary-Resistant Multi-Agent LLM System via Credibility Scoring
- Title(参考訳): 可視性スコアリングによる逆抵抗型マルチエージェントLCMシステム
- Authors: Sana Ebrahimi, Mohsen Dehghankar, Abolfazl Asudeh,
- Abstract要約: 信頼性スコアリングに基づく汎用・対向抵抗型マルチエージェントLCMフレームワークを提案する。
私たちのシステムは、チームのアウトプットを集約するときに使用される信頼性スコアを関連付けています。
- 参考スコア(独自算出の注目度): 8.779871128906787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While multi-agent LLM systems show strong capabilities in various domains, they are highly vulnerable to adversarial and low-performing agents. To resolve this issue, in this paper, we introduce a general and adversary-resistant multi-agent LLM framework based on credibility scoring. We model the collaborative query-answering process as an iterative game, where the agents communicate and contribute to a final system output. Our system associates a credibility score that is used when aggregating the team outputs. The credibility scores are learned gradually based on the past contributions of each agent in query answering. Our experiments across multiple tasks and settings demonstrate our system's effectiveness in mitigating adversarial influence and enhancing the resilience of multi-agent cooperation, even in the adversary-majority settings.
- Abstract(参考訳): マルチエージェントLPMシステムは様々な領域で強力な機能を示すが、敵エージェントや低性能エージェントに対して非常に脆弱である。
この問題を解決するために,信頼性スコアリングに基づく汎用かつ対向的なマルチエージェントLLMフレームワークを提案する。
我々は,協調的な問合せ処理を反復型ゲームとしてモデル化し,エージェントが通信を行い,最終的なシステム出力に寄与する。
私たちのシステムは、チームのアウトプットを集約するときに使用される信頼性スコアを関連付けています。
信頼性スコアは、クエリ応答における各エージェントの過去のコントリビューションに基づいて、徐々に学習される。
複数のタスクや設定にまたがる実験は、敵の影響力を軽減し、対人関係においてさえ、マルチエージェント協調のレジリエンスを高めるシステムの有効性を示すものである。
関連論文リスト
- Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
マルチエージェント・クロスタスク体験学習(MAEL)は,LSM駆動型エージェントに明示的なクロスタスク学習と経験蓄積を付与する新しいフレームワークである。
経験的学習フェーズでは、タスク解決ワークフローの各ステップの品質を定量化し、その結果の報酬を記憶する。
推論中、エージェントは、各推論ステップの有効性を高めるために、いくつかの例として、高頻度のタスク関連体験を検索する。
論文 参考訳(メタデータ) (2025-05-29T07:24:37Z) - Assessing Collective Reasoning in Multi-Agent LLMs via Hidden Profile Tasks [5.120446836495469]
我々は,マルチエージェントLLMシステムのための診断テストベッドとして,社会心理学からの隠れプロファイルパラダイムを紹介した。
エージェント間で重要な情報を非対称に分配することにより、エージェント間ダイナミクスが集団的推論をどのように支援するか、あるいは妨げるかを明らかにする。
協調エージェントは集団的設定において過度に協調する傾向にあるが,矛盾が集団収束を損なうことが示唆された。
論文 参考訳(メタデータ) (2025-05-15T19:22:54Z) - MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
我々はマルチエージェント・マルチモデル推論を生成にまで拡張し、特に改良による忠実度の向上を図っている。
我々は,各サブタスクに対して固有の評価を設計し,マルチエージェント(複数インスタンス)とマルチモデル(多変数LPMタイプ)の両方がエラー検出やクオリティクスに有効であることを示す。
我々はこれらの知見を、マルチエージェント・マルチモデル・リファインメント(MAMM-Refinement)と呼ばれる最終的な"レシピ"に統合し、マルチエージェント・マルチモデルコラボレーションがパフォーマンスを大幅に向上させる。
論文 参考訳(メタデータ) (2025-03-19T14:46:53Z) - Why Do Multi-Agent LLM Systems Fail? [91.39266556855513]
MAST(Multi-Agent System Failure taxonomy, MAST)は,MASの故障を理解するために考案された分類法である。
我々は、200以上のタスクにまたがる7つの人気のあるMASフレームワークを分析し、6つの専門家のアノテータを含む。
14のユニークな障害モードを特定し、(i)仕様問題、(ii)エージェント間ミスアライメント、(iii)タスク検証の3つに分類した。
論文 参考訳(メタデータ) (2025-03-17T19:04:38Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - Controlling Large Language Model-based Agents for Large-Scale
Decision-Making: An Actor-Critic Approach [28.477463632107558]
我々はLLaMACと呼ばれるモジュラーフレームワークを開発し、大規模言語モデルにおける幻覚とマルチエージェントシステムにおける協調に対処する。
LLaMACは、人間の脳にあるものに似た値分布をコードし、内部および外部からのフィードバック機構を利用して、モジュール間の協調と反復的推論を促進する。
論文 参考訳(メタデータ) (2023-11-23T10:14:58Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z) - Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling [13.915157044948364]
マルチエージェント強化学習をスケールする上で重要な障害の1つは、個々のエージェントの行動にクレジットを割り当てることである。
本稿では,このクレジット代入問題に対して,PRD(textitpartial reward decoupling)と呼ぶアプローチで対処する。
PRDは、大規模な協調的マルチエージェントRL問題を、エージェントのサブセットを含む分離されたサブプロブレムに分解し、クレジット割り当てを単純化する。
論文 参考訳(メタデータ) (2021-12-23T17:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。