論文の概要: Model Informed Flows for Bayesian Inference of Probabilistic Programs
- arxiv url: http://arxiv.org/abs/2505.24243v1
- Date: Fri, 30 May 2025 06:08:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.793303
- Title: Model Informed Flows for Bayesian Inference of Probabilistic Programs
- Title(参考訳): 確率的プログラムのベイズ推定のためのモデルインフォームドフロー
- Authors: Joohwan Ko, Justin Domke,
- Abstract要約: VIPとフルランクのガウス流は、翻訳項とモデル先行からの入力を付加した前方自己回帰流として正確に表現できることを示す。
モデルインフォームド・フローアーキテクチャを導入し、必要な翻訳機構、事前情報、階層的順序付けを追加する。
- 参考スコア(独自算出の注目度): 18.937801725778538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational inference often struggles with the posterior geometry exhibited by complex hierarchical Bayesian models. Recent advances in flow-based variational families and Variationally Inferred Parameters (VIP) each address aspects of this challenge, but their formal relationship is unexplored. Here, we prove that the combination of VIP and a full-rank Gaussian can be represented exactly as a forward autoregressive flow augmented with a translation term and input from the model's prior. Guided by this theoretical insight, we introduce the Model-Informed Flow (MIF) architecture, which adds the necessary translation mechanism, prior information, and hierarchical ordering. Empirically, MIF delivers tighter posterior approximations and matches or exceeds state-of-the-art performance across a suite of hierarchical and non-hierarchical benchmarks.
- Abstract(参考訳): 変分推論は、複雑な階層的ベイズモデルによって示される後続幾何学としばしば苦労する。
近年のフローベース変分族と変分推論パラメータ (VIP) の進歩は, それぞれの課題に対処しているが, 公式な関係は明らかにされていない。
ここでは,VIPとフルランクガウスの組み合わせを,翻訳項とモデル先行からの入力を付加した前方自己回帰流として正確に表現できることを示す。
この理論的な洞察に導かれたモデルインフォームド・フロー(MIF)アーキテクチャを導入し、必要な翻訳機構、事前情報、階層的順序付けを追加する。
経験的に、MIFはより厳密な後方近似と一致し、階層的なベンチマークと非階層的なベンチマークで最先端のパフォーマンスを超える。
関連論文リスト
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
本稿では,拡張性のある並列計算を可能にするアルゴリズム PISA を開発し,様々な第2モーメント方式をサポートする。
厳密な理論的な保証の下で、アルゴリズムは勾配のリプシッツの唯一の仮定の下で収束する。
視覚モデル、大規模言語モデル、強化学習モデル、生成的敵ネットワーク、繰り返しニューラルネットワークを含む様々なFMの総合的または微調整実験は、様々な最先端の方向と比較して優れた数値性能を示す。
論文 参考訳(メタデータ) (2025-02-15T12:28:51Z) - Exchangeable Sequence Models Quantify Uncertainty Over Latent Concepts [6.256239986541708]
事前学習されたシーケンスモデルは、交換可能なデータポイントよりも確率論的推論が可能であることを示す。
シーケンスモデルは、典型的なベイズモデルとは異なる観測間の関係を学習する。
シーケンス予測損失が不確実性定量化の品質を制御することを示す。
論文 参考訳(メタデータ) (2024-08-06T17:16:10Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Embedded-model flows: Combining the inductive biases of model-free deep
learning and explicit probabilistic modeling [8.405013085269976]
ドメイン固有の帰納バイアスを埋め込んだ構造層を用いた汎用変換を交互に行う組込みモデルフローを提案する。
EMFは,多モード性,階層的結合性,連続性などの望ましい特性を誘導するのに有効であることを示す。
実験では、この手法が一般的な構造的推論問題において最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-10-12T14:12:16Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Posterior Differential Regularization with f-divergence for Improving
Model Robustness [95.05725916287376]
クリーン入力とノイズ入力のモデル後部差を規則化する手法に着目する。
後微分正則化を$f$-divergencesの族に一般化する。
実験の結果, 後方微分を$f$-divergenceで正規化することで, モデルロバスト性の向上が期待できることがわかった。
論文 参考訳(メタデータ) (2020-10-23T19:58:01Z) - Self-Reflective Variational Autoencoder [21.054722609128525]
変分オートエンコーダ(VAE)は潜在変数生成モデルを学習するための強力なフレームワークである。
自己回帰推論(self-reflective inference)と呼ばれるソリューションを導入します。
実験では, 後部と後部を正確に一致させることの明確な利点を実証的に示す。
論文 参考訳(メタデータ) (2020-07-10T05:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。