P: A Universal Measure of Predictive Intelligence
- URL: http://arxiv.org/abs/2505.24426v1
- Date: Fri, 30 May 2025 10:05:54 GMT
- Title: P: A Universal Measure of Predictive Intelligence
- Authors: David Gamez,
- Abstract summary: There is no commonly agreed definition of the intelligence that AI systems are said to possess.<n>No-one has developed a practical measure that would enable us to compare the intelligence of humans, animals and AIs on a single ratio scale.<n>This paper sets out a new universal measure of intelligence that is based on the hypothesis that prediction is the most important component of intelligence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Over the last thirty years, considerable progress has been made with the development of systems that can drive cars, play games, predict protein folding and generate natural language. These systems are described as intelligent and there has been a great deal of talk about the rapid increase in artificial intelligence and its potential dangers. However, our theoretical understanding of intelligence and ability to measure it lag far behind our capacity for building systems that mimic intelligent human behaviour. There is no commonly agreed definition of the intelligence that AI systems are said to possess. No-one has developed a practical measure that would enable us to compare the intelligence of humans, animals and AIs on a single ratio scale. This paper sets out a new universal measure of intelligence that is based on the hypothesis that prediction is the most important component of intelligence. As an agent interacts with its normal environment, the accuracy of its predictions is summed up and the complexity of its predictions and perceived environment is accounted for using Kolmogorov complexity. Two experiments were carried out to evaluate the practical feasibility of the algorithm. These demonstrated that it could measure the intelligence of an agent embodied in a virtual maze and an agent that makes predictions about time-series data. This universal measure could be the starting point for a new comparative science of intelligence that ranks humans, animals and AIs on a single ratio scale.
Related papers
- Evaluating Intelligence via Trial and Error [59.80426744891971]
We introduce Survival Game as a framework to evaluate intelligence based on the number of failed attempts in a trial-and-error process.<n>When the expectation and variance of failure counts are both finite, it signals the ability to consistently find solutions to new challenges.<n>Our results show that while AI systems achieve the Autonomous Level in simple tasks, they are still far from it in more complex tasks.
arXiv Detail & Related papers (2025-02-26T05:59:45Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - On a Functional Definition of Intelligence [0.0]
Without an agreed-upon definition of intelligence, asking "is this system intelligent?"" is an untestable question.
Most work on precisely capturing what we mean by "intelligence" has come from the fields of philosophy, psychology, and cognitive science.
We present an argument for a purely functional, black-box definition of intelligence, distinct from how that intelligence is actually achieved.
arXiv Detail & Related papers (2023-12-15T05:46:49Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
Recent wave of generative AI has sparked excitement and concern over potentially superhuman levels of artificial intelligence.
At the same time, models still show basic errors in understanding that would not be expected even in non-expert humans.
This presents us with an apparent paradox: how do we reconcile seemingly superhuman capabilities with the persistence of errors that few humans would make?
arXiv Detail & Related papers (2023-10-31T18:07:07Z) - A Theory of Intelligences [0.0]
I develop a framework that applies across all systems from physics, to biology, humans and AI.
I present general equations for intelligence and its components, and a simple expression for the evolution of intelligence traits.
arXiv Detail & Related papers (2023-08-23T20:18:43Z) - The Nature of Intelligence [0.0]
The essence of intelligence commonly represented by both humans and AI is unknown.
We show that the nature of intelligence is a series of mathematically functional processes that minimize system entropy.
This essay should be a starting point for a deeper understanding of the universe and us as human beings.
arXiv Detail & Related papers (2023-07-20T23:11:59Z) - Cognitive Architecture for Co-Evolutionary Hybrid Intelligence [0.17767466724342065]
The paper questions the feasibility of a strong (general) data-centric artificial intelligence (AI)
As an alternative, the concept of co-evolutionary hybrid intelligence is proposed.
An architecture seamlessly incorporates a human into the loop of intelligent problem solving is considered.
arXiv Detail & Related papers (2022-09-05T08:26:16Z) - An argument for the impossibility of machine intelligence [0.0]
We define what it is to be an agent (device) that could be the bearer of AI.
We show that the mainstream definitions of intelligence' are too weak even to capture what is involved when we ascribe intelligence to an insect.
We identify the properties that an AI agent would need to possess in order to be the bearer of intelligence by this definition.
arXiv Detail & Related papers (2021-10-20T08:54:48Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.