SPPSFormer: High-quality Superpoint-based Transformer for Roof Plane Instance Segmentation from Point Clouds
- URL: http://arxiv.org/abs/2505.24475v1
- Date: Fri, 30 May 2025 11:23:16 GMT
- Title: SPPSFormer: High-quality Superpoint-based Transformer for Roof Plane Instance Segmentation from Point Clouds
- Authors: Cheng Zeng, Xiatian Qi, Chi Chen, Kai Sun, Wangle Zhang, Yuxuan Liu, Yan Meng, Bisheng Yang,
- Abstract summary: Transformers have been seldom employed in point cloud roof plane instance segmentation.<n>Existing superpoint Transformers suffer from limited performance due to the use of low-quality superpoints.<n>We establish two criteria that high-quality superpoints should satisfy and introduce a corresponding two-stage superpoint generation process.
- Score: 14.67024375365087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have been seldom employed in point cloud roof plane instance segmentation, which is the focus of this study, and existing superpoint Transformers suffer from limited performance due to the use of low-quality superpoints. To address this challenge, we establish two criteria that high-quality superpoints for Transformers should satisfy and introduce a corresponding two-stage superpoint generation process. The superpoints generated by our method not only have accurate boundaries, but also exhibit consistent geometric sizes and shapes, both of which greatly benefit the feature learning of superpoint Transformers. To compensate for the limitations of deep learning features when the training set size is limited, we incorporate multidimensional handcrafted features into the model. Additionally, we design a decoder that combines a Kolmogorov-Arnold Network with a Transformer module to improve instance prediction and mask extraction. Finally, our network's predictions are refined using traditional algorithm-based postprocessing. For evaluation, we annotated a real-world dataset and corrected annotation errors in the existing RoofN3D dataset. Experimental results show that our method achieves state-of-the-art performance on our dataset, as well as both the original and reannotated RoofN3D datasets. Moreover, our model is not sensitive to plane boundary annotations during training, significantly reducing the annotation burden. Through comprehensive experiments, we also identified key factors influencing roof plane segmentation performance: in addition to roof types, variations in point cloud density, density uniformity, and 3D point precision have a considerable impact. These findings underscore the importance of incorporating data augmentation strategies that account for point cloud quality to enhance model robustness under diverse and challenging conditions.
Related papers
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Adaptive Point Transformer [88.28498667506165]
Adaptive Point Cloud Transformer (AdaPT) is a standard PT model augmented by an adaptive token selection mechanism.
AdaPT dynamically reduces the number of tokens during inference, enabling efficient processing of large point clouds.
arXiv Detail & Related papers (2024-01-26T13:24:45Z) - PointGPT: Auto-regressively Generative Pre-training from Point Clouds [45.488532108226565]
We present PointGPT, a novel approach that extends the concept of GPT to point clouds.
Specifically, a point cloud auto-regressive generation task is proposed to pre-train transformer models.
Our approach achieves classification accuracies of 94.9% on the ModelNet40 dataset and 93.4% on the ScanObjectNN dataset, outperforming all other transformer models.
arXiv Detail & Related papers (2023-05-19T07:39:04Z) - AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware
Transformers [94.11915008006483]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We design a new model, called PoinTr, which adopts a Transformer encoder-decoder architecture for point cloud completion.
Our method attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI.
arXiv Detail & Related papers (2023-01-11T16:14:12Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point
Modeling [104.82953953453503]
We present Point-BERT, a new paradigm for learning Transformers to generalize the concept of BERT to 3D point cloud.
Experiments demonstrate that the proposed BERT-style pre-training strategy significantly improves the performance of standard point cloud Transformers.
arXiv Detail & Related papers (2021-11-29T18:59:03Z) - CpT: Convolutional Point Transformer for 3D Point Cloud Processing [10.389972581905]
We present CpT: Convolutional point Transformer - a novel deep learning architecture for dealing with the unstructured nature of 3D point cloud data.
CpT is an improvement over existing attention-based Convolutions Neural Networks as well as previous 3D point cloud processing transformers.
Our model can serve as an effective backbone for various point cloud processing tasks when compared to the existing state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-21T17:45:55Z) - Point Cloud Augmentation with Weighted Local Transformations [14.644850090688406]
We propose a simple and effective augmentation method called PointWOLF for point cloud augmentation.
The proposed method produces smoothly varying non-rigid deformations by locally weighted transformations centered at multiple anchor points.
AugTune generates augmented samples of desired difficulties producing targeted confidence scores.
arXiv Detail & Related papers (2021-10-11T16:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.