論文の概要: Binary Cumulative Encoding meets Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2505.24595v1
- Date: Fri, 30 May 2025 13:41:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.975445
- Title: Binary Cumulative Encoding meets Time Series Forecasting
- Title(参考訳): バイナリ累積エンコーディングが時系列予測に到達
- Authors: Andrei Chernov, Vitaliy Pozdnyakov, Ilya Makarov,
- Abstract要約: 単調なバイナリベクトルにスカラーターゲットを表すバイナリ累積符号化(BCE)を導入する。
BCEはオーダとマグニチュード情報を暗黙的に保存し、モデルが分類フレームワーク内で動作しながら、距離対応の表現を学習できるようにする。
提案手法は,より少ないパラメータを必要とせず,より高速な学習が可能でありながら,点予測と確率予測の両方で広く用いられている手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.11704154007740832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies in time series forecasting have explored formulating regression via classification task. By discretizing the continuous target space into bins and predicting over a fixed set of classes, these approaches benefit from stable training, robust uncertainty modeling, and compatibility with modern deep learning architectures. However, most existing methods rely on one-hot encoding that ignores the inherent ordinal structure of the underlying values. As a result, they fail to provide information about the relative distance between predicted and true values during training. In this paper, we propose to address this limitation by introducing binary cumulative encoding (BCE), that represents scalar targets into monotonic binary vectors. This encoding implicitly preserves order and magnitude information, allowing the model to learn distance-aware representations while still operating within a classification framework. We propose a convolutional neural network architecture specifically designed for BCE, incorporating residual and dilated convolutions to enable fast and expressive temporal modeling. Through extensive experiments on benchmark forecasting datasets, we show that our approach outperforms widely used methods in both point and probabilistic forecasting, while requiring fewer parameters and enabling faster training.
- Abstract(参考訳): 時系列予測における最近の研究は、分類タスクによる定式化回帰について検討している。
連続目標空間をビンに分割し、一定のクラスの予測を行うことで、これらのアプローチは安定したトレーニング、堅牢な不確実性モデリング、モダンなディープラーニングアーキテクチャとの互換性の恩恵を受ける。
しかし、既存のほとんどの手法は、基礎となる値固有の順序構造を無視したワンホット符号化に依存している。
その結果、トレーニング中に予測値と真の値の相対距離に関する情報が得られなかった。
本稿では、スカラーターゲットを単調なバイナリベクトルに変換するバイナリ累積符号化(BCE)を導入することにより、この制限に対処することを提案する。
このエンコーディングはオーダとマグニチュード情報を暗黙的に保存し、モデルが分類フレームワーク内で動作しながら距離対応の表現を学習できるようにする。
本稿では,BCEに特化して設計された畳み込みニューラルネットワークアーキテクチャを提案する。
ベンチマーク予測データセットの広範な実験を通して,本手法は,パラメータを少なくし,より高速なトレーニングを実現するとともに,点予測と確率予測の両方において広く用いられている手法よりも優れていることを示す。
関連論文リスト
- Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - Time Elastic Neural Networks [2.1756081703276]
時間弾性ニューラルネットワーク(teNN)という,非定型ニューラルネットワークアーキテクチャの導入と詳細化について述べる。
古典的ニューラルネットワークアーキテクチャと比較して新しいのは、時間ゆがみ能力を明確に組み込んでいることだ。
トレーニング過程において,TENNは各細胞に必要となるニューロン数を減少させることに成功した。
論文 参考訳(メタデータ) (2024-05-27T09:01:30Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
予測対象として高レベルな文脈化機能を使用することで,優れた性能が得られることを示す。
具体的には、シンプルで効率的な3D行動表現学習フレームワークであるSkeleton2vecを提案する。
提案するSkeleton2vecは,従来の手法より優れ,最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-01-01T12:08:35Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Towards Anytime Classification in Early-Exit Architectures by Enforcing
Conditional Monotonicity [5.425028186820756]
任意のアルゴリズムは、計算予算が動的である環境に適しています。
現在のアーリーエグジットネットワークは、任意の設定に直接適用できないことを示す。
本稿では,製品・オブ・エグゼクティブ(Product-of-Experts)に基づくエレガントなポストホック修正を提案する。
論文 参考訳(メタデータ) (2023-06-05T07:38:13Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
階層時系列を予測するための機械学習手法を提案する。
予測整合は予測を調整し、階層をまたいで一貫性を持たせるプロセスである。
我々は、階層構造をキャプチャする情報を抽出するディープニューラルネットワークの能力を利用する。
論文 参考訳(メタデータ) (2020-05-31T22:26:16Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
金融時系列予測のための表現学習フレームワークを提案する。
本稿では、まず時系列データからコンパクトな表現を学習し、次に学習した表現を用いて、時系列の動きを予測するためのより単純なモデルを訓練する。
論文 参考訳(メタデータ) (2020-02-18T15:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。