Model-Guided Network with Cluster-Based Operators for Spatio-Spectral Super-Resolution
- URL: http://arxiv.org/abs/2505.24605v1
- Date: Fri, 30 May 2025 13:54:47 GMT
- Title: Model-Guided Network with Cluster-Based Operators for Spatio-Spectral Super-Resolution
- Authors: Ivan Pereira-Sánchez, Julia Navarro, Ana Belén Petro, Joan Duran,
- Abstract summary: paper addresses the problem of reconstructing a high-resolution hyperspectral image from a low-resolution multispectral observation.<n>We propose an end-to-end framework that explicitly decomposes the joint-spectral super-resolution problem into spatial super-resolution, spectral super-resolution and fusion tasks.
- Score: 2.874893537471256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of reconstructing a high-resolution hyperspectral image from a low-resolution multispectral observation. While spatial super-resolution and spectral super-resolution have been extensively studied, joint spatio-spectral super-resolution remains relatively explored. We propose an end-to-end model-driven framework that explicitly decomposes the joint spatio-spectral super-resolution problem into spatial super-resolution, spectral super-resolution and fusion tasks. Each sub-task is addressed by unfolding a variational-based approach, where the operators involved in the proximal gradient iterative scheme are replaced with tailored learnable modules. In particular, we design an upsampling operator for spatial super-resolution based on classical back-projection algorithms, adapted to handle arbitrary scaling factors. Spectral reconstruction is performed using learnable cluster-based upsampling and downsampling operators. For image fusion, we integrate low-frequency estimation and high-frequency injection modules to combine the spatial and spectral information from spatial super-resolution and spectral super-resolution outputs. Additionally, we introduce an efficient nonlocal post-processing step that leverages image self-similarity by combining a multi-head attention mechanism with residual connections. Extensive evaluations on several datasets and sampling factors demonstrate the effectiveness of our approach. The source code will be available at https://github.com/TAMI-UIB/JSSUNet
Related papers
- JAFAR: Jack up Any Feature at Any Resolution [53.343826346140624]
JAFAR is a lightweight and flexible feature upsampler for Foundation Visions.<n>It enhances the spatial resolution of visual features from any Foundation Vision to an arbitrary target resolution.<n>It generalizes remarkably well to significantly higher output scales.
arXiv Detail & Related papers (2025-06-10T20:53:12Z) - A Fusion-Guided Inception Network for Hyperspectral Image Super-Resolution [4.487807378174191]
We propose a single-image super-resolution model called the Fusion-Guided Inception Network (FGIN)<n>Specifically, we first employ a spectral-spatial fusion module to effectively integrate spectral and spatial information.<n>An Inception-like hierarchical feature extraction strategy is used to capture multiscale spatial dependencies.<n>To further enhance reconstruction quality, we incorporate an optimized upsampling module that combines bilinear with depthwise separable convolutions.
arXiv Detail & Related papers (2025-05-06T11:15:59Z) - Unsupervised Hyperspectral and Multispectral Image Blind Fusion Based on Deep Tucker Decomposition Network with Spatial-Spectral Manifold Learning [15.86617273658407]
We propose an unsupervised blind fusion method for hyperspectral and multispectral images based on Tucker decomposition and spatial spectral manifold learning (DTDNML)
We show that this method enhances the accuracy and efficiency of hyperspectral and multispectral fusion on different remote sensing datasets.
arXiv Detail & Related papers (2024-09-15T08:58:26Z) - QMambaBSR: Burst Image Super-Resolution with Query State Space Model [55.56075874424194]
Burst super-resolution aims to reconstruct high-resolution images with higher quality and richer details by fusing the sub-pixel information from multiple burst low-resolution frames.<n>In BusrtSR, the key challenge lies in extracting the base frame's content complementary sub-pixel details while simultaneously suppressing high-frequency noise disturbance.<n>We introduce a novel Query Mamba Burst Super-Resolution (QMambaBSR) network, which incorporates a Query State Space Model (QSSM) and Adaptive Up-sampling module (AdaUp)
arXiv Detail & Related papers (2024-08-16T11:15:29Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - Cross-Scope Spatial-Spectral Information Aggregation for Hyperspectral
Image Super-Resolution [47.12985199570964]
We propose a novel cross-scope spatial-spectral Transformer (CST) to investigate long-range spatial and spectral similarities for single hyperspectral image super-resolution.
Specifically, we devise cross-attention mechanisms in spatial and spectral dimensions to comprehensively model the long-range spatial-spectral characteristics.
Experiments over three hyperspectral datasets demonstrate that the proposed CST is superior to other state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2023-11-29T03:38:56Z) - A Spectral Diffusion Prior for Hyperspectral Image Super-Resolution [14.405562058304074]
Fusion-based hyperspectral image (HSI) super-resolution aims to produce a high-spatial-resolution HSI by fusing a low-spatial-resolution HSI and a high-spatial-resolution multispectral image.
Motivated by the success of diffusion models, we propose a novel spectral diffusion prior for fusion-based HSI super-resolution.
arXiv Detail & Related papers (2023-11-15T13:40:58Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - A Latent Encoder Coupled Generative Adversarial Network (LE-GAN) for
Efficient Hyperspectral Image Super-resolution [3.1023808510465627]
generative adversarial network (GAN) has proven to be an effective deep learning framework for image super-resolution.
To alleviate the problem of mode collapse, this work has proposed a novel GAN model coupled with a latent encoder (LE-GAN)
LE-GAN can map the generated spectral-spatial features from the image space to the latent space and produce a coupling component to regularise the generated samples.
arXiv Detail & Related papers (2021-11-16T18:40:19Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.